A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The significance of thermomechanical processing on the cellular response of biomedical Co-Cr-Mo alloys. | LitMetric

The significance of thermomechanical processing on the cellular response of biomedical Co-Cr-Mo alloys.

J Mech Behav Biomed Mater

Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA. Electronic address:

Published: September 2022

Strengthening of biomedical Co-Cr-Mo alloys has been explored via thermomechanical processing for enhancing the durability of their biomedical applications. However, the effects of cold and hot deformation on the cellular activity continue to be unclear. In this study, we prepared Co-Cr-Mo alloy rods via cold swaging and hot-caliber rolling and studied the relationship between the microstructure and cellular response of pre-osteoblasts. The cold-swaged rod experienced strain-induced martensitic transformation, which increased the volume fraction of the hexagonal close-packed (hcp) ε-martensite to ∼60 vol.% with an increase in area reduction (r) to 30%. The 111 fiber texture of the face-centered cubic (fcc) γ-matrix followed the Shoji-Nishiyama orientation relationship with ε-martensite. Cell culture results revealed beneficial effects of cold swaging on the cell response, in terms of adhesion, proliferation and morphology of cells, although increasing r did not significantly affect cellular metabolism levels. The addition of small content of Zr (0.04 wt.%) led to enhanced focal adhesion of cells, which became more significant at higher r. The microstructural evolution during hot-caliber rolling, namely, grain refinement without any phase transformation and strong texture development, did not appreciably affect the cellular activity. These findings are envisaged to facilitate alloy design and microstructural optimization for favorable tuning the osseointegration of biomedical Co-Cr-Mo alloys.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2022.105360DOI Listing

Publication Analysis

Top Keywords

biomedical co-cr-mo
12
co-cr-mo alloys
12
thermomechanical processing
8
cellular response
8
effects cold
8
cellular activity
8
cold swaging
8
hot-caliber rolling
8
affect cellular
8
cellular
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!