Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286531PMC
http://dx.doi.org/10.1002/ctm2.966DOI Listing

Publication Analysis

Top Keywords

integrating plasma
4
plasma cell-free
4
cell-free dna
4
dna clinical
4
clinical laboratory
4
laboratory enhances
4
enhances prediction
4
prediction critically
4
critically ill
4
ill patients
4

Similar Publications

Multimodal data integration to predict atrial fibrillation.

Eur Heart J Digit Health

January 2025

Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, 401 East River Parkway, Minneapolis, MN, USA.

Aims: Many studies have utilized data sources such as clinical variables, polygenic risk scores, electrocardiogram (ECG), and plasma proteins to predict the risk of atrial fibrillation (AF). However, few studies have integrated all four sources from a single study to comprehensively assess AF prediction.

Methods And Results: We included 8374 (Visit 3, 1993-95) and 3730 (Visit 5, 2011-13) participants from the Atherosclerosis Risk in Communities Study to predict incident AF and prevalent (but covert) AF.

View Article and Find Full Text PDF

Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.

View Article and Find Full Text PDF

Objective: The aim of this paper is to discover differentially expressed genes related to ferroptosis (DEFRGs) in patients with ST-segment elevation myocardial infarction (STEMI) and to construct a reliable prognostic signature that incorporates key DEFRGs and easily accessible clinical factors.

Methods: We did a systematic review of Gene Expression Omnibus datasets and picked datasets SE49925, GSE60993, and GSE61144 for analysis. We applied GEO2R to find DEFRGs and overlapped them among the picked datasets.

View Article and Find Full Text PDF

Hydroxyapatite, renowned for its biocompatibility and osteoconductive properties, plays a fundamental role in bone regeneration owing to its resemblance to natural bone mineral, thus offering considerable potential for advancing tissue engineering strategies. In this article, the innovative integration of silicon ions into biogenic (bovine-derived) hydroxyapatite (SiBHA) via a tailored sol-gel process is reported. The resultant SiBHA scaffolds exhibited an interconnected microporous structure with a total porosity of 70% and pore dimensions ranging from 120 to 650 µm.

View Article and Find Full Text PDF

Preparation of Silicon Nanopillar Arrays Using Reactive Ion Etching with a Faraday Cage.

ACS Appl Mater Interfaces

January 2025

Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China.

Faraday cages are extensively utilized in plasma-based etching and deposition processes to regulate ion behavior due to their shielding effect on electromagnetic fields. Herein, vertical silicon nanopillar arrays are fabricated through SF and O reactive ion etching. By incorporation of a Faraday cage in the plasma equipment, the impact of the Faraday cage on the morphology of the silicon nanopillars is analyzed; the Faraday cage blocks out the sputtered particles and eradicates the formation of silicon nanograss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!