A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DeepLogic: Joint Learning of Neural Perception and Logical Reasoning. | LitMetric

Neural-symbolic learning, aiming to combine the perceiving power of neural perception and the reasoning power of symbolic logic together, has drawn increasing research attention. However, existing works simply cascade the two components together and optimize them isolatedly, failing to utilize the mutual enhancing information between them. To address this problem, we propose DeepLogic, a framework with joint learning of neural perception and logical reasoning, such that these two components are jointly optimized through mutual supervision signals. In particular, the proposed DeepLogic framework contains a deep-logic module that is capable of representing complex first-order-logic formulas in a tree structure with basic logic operators. We then theoretically quantify the mutual supervision signals and propose the deep&logic optimization algorithm for joint optimization. We further prove the convergence of DeepLogic and conduct extensive experiments on model performance, convergence, and generalization, as well as its extension to the continuous domain. The experimental results show that through jointly learning both perceptual ability and logic formulas in a weakly supervised manner, our proposed DeepLogic framework can significantly outperform DNN-based baselines by a great margin and beat other strong baselines without out-of-box tools.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2022.3191093DOI Listing

Publication Analysis

Top Keywords

neural perception
12
deeplogic framework
12
joint learning
8
learning neural
8
perception logical
8
logical reasoning
8
mutual supervision
8
supervision signals
8
proposed deeplogic
8
deeplogic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!