Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superhydrophobic surfaces with regional functions have widespread applications in biotechnology, diagnostic applications, and micro-chemical synthesis and analysis. However, owing to their chemical inertness, superhydrophobic surfaces with chemical reactivity are difficult to achieve. Superhydrophobic surfaces that can be further modified with varied densities and expanded species of the functional moieties are not readily available. In this study, a single-step approach to achieve a reactive superhydrophobic surface is reported, on which chemical grafting of a library of molecules can be carried out through surface-initiated atom-transfer radical addition or surface-initiated atom-transfer radical polymerization. The excellent spatial and temporal controllability of these chemical processes under visible light enables us to take advantage of programmed liquid-crystal-display (LCD) or Digital Light Processing (DLP) photolithography systems to effortlessly regulate the location, density, and species of the functional molecules on the reactive superhydrophobic surface. The distinctive properties of this surface will provide new insight into intelligent superhydrophobic material development and practical applications, such as aqueous/oil microdroplets array, multi-anti-counterfeiting labels and integrated microfluidic reactors with enzymes for chemical logic learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202203619 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!