Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress is one of most common environmental stresses encountered by fish, especially during their fragile larval stage. More and more studies are aimed at understanding the antioxidant defense mechanism of fish larvae. Herein we characterized the early resistance of zebrafish larvae to oxidative stress and investigated the underlying transcriptional regulations using RNA-seq. We found that pre-exposure of zebrafish larvae to 2 mM HO for 1 or 3 h significantly improved their survival under higher doses of HO (3 mM), suggesting the antioxidant defenses of zebrafish larvae were rapidly built under pre-exposure of HO. Comparative transcriptome analysis showed that 310 (185 up and 125 down) and 512 (331 up and 181 down) differentially expressed genes were generated after 1 and 3 h of pre-exposure, respectively. KEGG enrichment analysis revealed that protein processing in endoplasmic reticulum is a highly enriched pathway; multiple genes (e.g., hsp70.1, hsp70.2, and hsp90aa1.2) encoding heat shock proteins in this pathway were sharply upregulated presumably to correct protein misfolding and maintaining the cellular normal functions during oxidative stress. More importantly, the Keap1/Nrf2 system-mediated detoxification enzyme system was significantly activated, which regulates the upregulation of target genes (e.g., gstp1, gsr, and prdx1) to scavenger reactive oxygen species, thereby defending against apoptosis. In addition, the MAPK, as a transmitter of stress signals, was activated, which may play an important role in activating antioxidant system in the early stages of oxidative stress. Altogether, these findings demonstrate that zebrafish larvae rapidly establish resistance to oxidative stress, and this involves changes in protein processing, stress signal transmission, and the activation of detoxification pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-022-01100-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!