The functional trade-off between respiratory gas exchange versus osmolyte and water balance that occurs at the thin, highly vascularized gills of fishes has been termed the osmorespiratory compromise. Increases in gas exchange capacity for meeting elevated oxygen demands can end up favoring the passive movement of osmolytes and water, potentially causing a disturbance in osmotic balance. This phenomenon has been studied only sparsely in marine elasmobranchs. Our goal was to evaluate the effects of exhaustive exercise (as a modulator of oxygen demand) on oxygen consumption (MO), branchial losses of nitrogenous products (ammonia and urea-N), diffusive water exchange rates, and gill ventilation (frequency and amplitude), in the Pacific spiny dogfish (Squalus suckleyi). To that end, MO, osmolyte fluxes, diffusive water exchange rate, and ventilation dynamics were first measured under resting control conditions, then sharks were exercised until exhaustion (20 min), and the same parameters were monitored for the subsequent 4 h of recovery. While MO nearly doubled immediately after exercise and remained elevated for 2 h, ventilation dynamics did not change, suggesting that fish were increasing oxygen extraction efficiency at the gills. Diffusive water flux rates (measured over 0-2 h of recovery) were not affected. Ammonia losses were elevated by 7.6-fold immediately after exercise and remained elevated for 3 h into recovery, while urea-N losses were elevated only 1.75-fold and returned to control levels after 1 h. These results are consistent with previous investigations using different challenges (hypoxia, high temperature) and point to a tighter regulation of urea-N conservation mechanisms at the gills, likely due to the use of urea as a prized osmolyte in elasmobranchs. Environmental hyperoxia offered no relief from the osmorespiratory compromise, as there were no effects on any of the parameters measured during recovery from exhaustive exercise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00360-022-01447-4 | DOI Listing |
J Comp Physiol B
October 2024
Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
The complex relationships between the structure and function of fish gills have been of interest to comparative physiologists for many years. Morphological plasticity of the gill provides a dynamic mechanism to reversibly alter its structure in response to changes in the conditions experienced by the fish. The best known example of gill remodelling is the growth or retraction of cell masses between the lamellae, a rapid process that alters the lamellar surface area that is exposed to the water (i.
View Article and Find Full Text PDFSci Total Environ
June 2024
MARBEC, Univ. Montpellier, CNRS, IFREMER, IRD, Montpellier, France.
Steeper and sometimes extreme salinity gradients increasingly affect aquatic organisms because of climate change. Hypersalinity habitats demand powerful physiological adaptive strategies. Few teleost species have the capacity to spend their whole life cycle in salinities way over seawater levels.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
June 2024
UMR9190-MARBEC, IRD-Ifremer-CNRS-Université de Montpellier, Montpellier, France.
Physiological and morphological acclimation capacities of black-chinned tilapia, Sarotherodon melanotheron were studied from fish to gill cell level when fish are maintained in freshwater, seawater, and hypersaline conditions. Fish osmoregulatory capacity, gill ionocyte morphology, osmo-respiratory compromise, O consumption rate, branchial antioxidative defense, and cell apoptosis were considered. Captive juvenile tilapias were maintained in controlled freshwater conditions (FW: 0.
View Article and Find Full Text PDFFish Physiol Biochem
October 2023
Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
In nature, mosshead sculpins (Clinocottus globiceps) are challenged by fluctuations in temperature and oxygen levels in their environment. However, it is unclear how mosshead sculpins modulate the permeability of their branchial epithelia to water and O in response to temperature or hypoxia stress. Acute decrease in temperature from 13 to 6 C reduced diffusive water flux rate by 22% and ṀO by 51%, whereas acute increase in temperature from 13 to 25 C increased diffusive water flux rate by 217% and ṀO by 140%, yielding overall Q values of 2.
View Article and Find Full Text PDFJ Exp Biol
February 2023
Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4.
Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a β-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in β-alanine, which inhibits cardiomyocyte taurine uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!