Bismuth-based catalysts exhibit excellent activity and selectivity for the electroreduction of carbon dioxide (CO). However, single-component bismuth-based catalysts are not satisfactory for the electrochemical reduction of CO to formic acid, mainly due to their high hydrogen production, low electrical conductivity, and small catalytic current density. Herein, we used a coordination strategy to recombine Bi and In at the molecular level to form Bi/In bimetallic metal-organic frameworks (MOFs), which were then calcined to obtain MOF-derived Bi/In bimetallic oxide nanoparticles embedded in carbon networks. Thanks to the synergistic effect of bimetallic components, high specific surface area, suitable pore size distribution, and high electrical conductivity of the carbon network, the material exhibits excellent activity and selectivity for electroreduction of CO to formate. In H-type electrolyzers, the formate Faradaic efficiency reaches 91% at -0.9 V (vs RHE) and does not decrease significantly within 48 h. In situ Fourier transform infrared spectroscopy confirms the reaction intermediates and reveals that CO electroreduction is dominant by the *OCHO pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01961 | DOI Listing |
Bioelectrochemistry
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:
Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Department of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
Transition metal oxides, distinguished by their high theoretical specific capacitance values, inexpensive cost, and low toxicity, have been extensively utilized as electrode materials for high-performance supercapacitors. Nevertheless, their conductivity is generally insufficient to facilitate rapid electron transport at high rates. Therefore, research on bimetallic oxide electrode materials has become a hot spot, especially in the field of micro-supercapacitors (MSC).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:
Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Technical University of Munich, Department of Chemistry, Lichtenbergstr. 4, D-85747, Garching, Germany.
Despite the first examples being isolated more than two decades ago, little is known about the redox chemistry of stable phosphacyclic biradicaloids. Here, we demonstrate that a biradicaloid featuring a diphosphaindenyl backbone is able to undergo both oxidation and reduction reactions. One-electron oxidation results in the formation of a dicationic cage compound structurally related to an isomer of hypostrophene (CH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!