The synthetic bicyclic bis(hemiacetals) compounds 1,5-pyranose-9,7-pyranoses, with a structural analogy to the bicyclic monosaccharide Bradyrhizose, have been described here based on a theoretical approach, using DFT calculations with the B3LYP functional combined with the 6-311 + G(d,p) basis set. First, we have performed a geometrical and electronic properties description of (1 R,9S), (1S,9S) and (1S,9R)-1,5-pyranose-9,7-pyranoses. Results analysis indicated that, slight differences in the three-dimensional orientations of their atoms lead to an enormous difference in chemical reactivity. Consequently, (1S,9S) and (1S,9R) isomers are predicted to be the most resembling the natural bradyrhizose in structural features. To enhance the performance of these two isomers, a set of modifications through functional groups attached to the reactive sites were determined by local reactivity descriptors. Subsequently, in order to get more information on the obtained derivatives for both isomers, HOMO, LUMO, Egap and four electronic parameters were calculated and compared. The substituted systems show a good performance in chemical reactivity than the unmodified parent compounds.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2022.2099975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!