Surfing the tide: Homeward migration of sea trout (Salmo trutta) in a Patagonian river.

J Fish Biol

Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Argentina.

Published: October 2022

This study evaluates the influence of marine and freshwater conditions on the timing of river entry and upstream migration of sea trout (Salmo trutta) in the Grande River of Tierra del Fuego, Patagonia. We analysed the in-river catch-and-release records from a group of fishing lodges that dominate the Grande River fishery during January-April 2008 (n = 5029 fish) as a function of environmental variables: tidal amplitude, stage in the lunar cycle, river discharge, and river water temperature along the homeward migration season. We discuss the value of the daily catch rate as an abundance index in the Grande river, then analyse the temporal structure of the tidal cycle in the Grande River estuary, a macro-tidal environment with a mean tidal amplitude of 5.7 m, and analyse the fit of a generalized additive model to trout catches on a daily basis in four sections along the river to identify the environmental variables that may affect trout abundance throughout the homeward migration. Fish catches in each section of the river were differentially affected by specific environmental variables: tidal amplitude had a positive and significant effect on catches in the lower river sections, whereas water temperature and river discharge significantly affected catches in upper sections (positive effect of temperature; negative effect of discharge). Catches in the lower section clearly reflect the river entry stage of the homeward migration, with a bi-modal shape significantly correlated with the tidal cycle. The first peak was composed mainly of larger multi-sea-winter trout that move upstream, whereas the second one had a wider range of fish lengths, including a large proportion of small and maybe nonreproductive trout that overwinter in the lower river. Based on our results, we conclude that the large tides in the Grande River estuary strongly affect the river entry timing of sea trout. The underlying mechanisms of this effect may be a combination of increased olfactory recognition and increased tidal transport modulated by the seasonal tidal cycle, which operates on trout during coastal migration to produce the pulses observed in the Grande River sea trout run. In the middle and upper sections of the river, where the tidal effect at river entry was dissipated as upstream migration progressed, trout catches increased with water temperature and decreased with river discharge, which may operate through their influence on in-river migration rate and abundance, but also through changes in catchability.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfb.15151DOI Listing

Publication Analysis

Top Keywords

grande river
24
river
20
homeward migration
16
sea trout
16
river entry
16
environmental variables
12
tidal amplitude
12
river discharge
12
water temperature
12
tidal cycle
12

Similar Publications

Navigating water security: A sustainability evaluation in basin socio-ecological systems. The Grande River basin case study, Antioquia-Colombia.

Sci Total Environ

January 2025

Departamento de Geociencias y Medio Ambiente - Facultad de Minas- Universidad Nacional de Colombia, Sede Medellín, Medellín, Antioquia, Colombia. Electronic address:

Socio-ecological sustainability arises from interactions between natural and social systems. Sustainability in water security means effectively managing water resources to continuously achieve social goals without surpassing ecological limits to maintain or enhance ecological integrity and social well-being. Despite efforts to measure sustainability focused on water security, challenges remain, such as selecting indicators that capture socio-ecological dynamics and defining appropriate aggregation methods.

View Article and Find Full Text PDF

Despite their potential risks to human health and the environment at ng/L to μg/L concentrations, there has been relatively little effort to measure trace organic compounds (TOrCs) in surface waters of Central America. The concentrations of eighteen TOrCs detected at eleven surface water sites in the Lempa River basin of El Salvador and four sources of drinking water for the cities of San Salvador, Antiguo Cuscatlán, Soyapango, and Santa Tecla are reported here. All samples were analyzed via liquid chromatography with tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

The selection and expression of conspicuous colorations in animals is often related to anti-predation strategies and sociosexual communication. The giant river prawn, Macrobrachium rosenbergii (de Man, 1879) is a species with three male morphotypes that vary in claws' coloration and the size of the animals. It has been suggested that male reproductive quality might be associated to their coloration, but evidence is still conflicting.

View Article and Find Full Text PDF

The present work investigated the application of UVC combined with electrogenerated HO (UVC/e-HO) for BTA degradation using a Printex L6 carbon-based (PL6C) gas diffusion electrode (GDE). The studies were carried out by analyzing the influence of the current density, pH and initial BTA concentration in the contaminant degradation process. Under optimal conditions using 0.

View Article and Find Full Text PDF

This study reports the development and implementation of a straightforward, rapid, and cost-effective voltammetric technique for piroxicam (PIR) detection at nanomolar concentrations in biological and environmental samples. The method involved the use of a screen-printed electrode (SPE) enhanced with a combination of Printex L6 carbon (PL6C) and polyaniline-based activated carbon (PAC) on a chitosan film crosslinked with epichlorohydrin (CTS:EPH). The detection was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!