Reactive oxygen species are a fatal challenge to the plant pathogenic bacterium Pseudomonas syringae. In this study, we reveal that the global regulatory protein RsmA3 from the RetS-Gac/Rsm signalling pathway modulates RpoS in the early-log growth phase in the P. syringae wild-type strain MB03, thereby regulating oxidative tolerance to H O and ultimately affecting pathogenicity to the host plant. Following increased H O by external addition or endogenous induction by menadione, the resistance of the mutant strain ΔretS to H O is significantly enhanced due to rapid increases in the transcription of Rsm-related non-coding small RNAs (nc sRNAs), a sigma factor RpoS, and H O -detoxifying enzymes. Moreover, the ΔretS mutant is significantly less pathogenic in cucumber leaves. Seven Rsm-related nc sRNAs (namely, rsmZ, rsmY and rsmX ) show functional redundancy in the RetS-Gac-Rsm signalling pathway. External addition of H O stimulates increases in the transcription of both rsmY and rsmZ. Thus, we propose a regulatory model of the RetS-Gac-Rsm signalling pathway in P. syringae MB03 for the regulation of H O tolerance and phytopathogenicity in the host plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.16132 | DOI Listing |
Clin Med Insights Oncol
January 2025
Ted Rogers School of Information Technology Management, Toronto Metropolitan University, Toronto, ON, Canada.
Despite the expanding therapeutic options available to cancer patients, therapeutic resistance, disease recurrence, and metastasis persist as hallmark challenges in the treatment of cancer. The rise to prominence of generative artificial intelligence (GenAI) in many realms of human activities is compelling the consideration of its capabilities as a potential lever to advance the development of effective cancer treatments. This article presents a hypothetical case study on the application of generative pre-trained transformers (GPTs) to the treatment of metastatic prostate cancer (mPC).
View Article and Find Full Text PDFInflammopharmacology
January 2025
Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
Nuclear factor kappa B (NF-kB) is a kind of transcription factor which resides in cytoplasm of each cell and on activation, it translocates to the nucleus. It is activated by a many inducible agents including endotoxins, inflammatory stimuli, carcinogens, pathogens, nicotine, and tumour promoters, etc. NF-kB is activated by canonical and non-canonical signalling pathways which has different signalling compounds and its biological functions.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.42 Wenhua West Road, Jinan, 250011, P.R. China.
Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
Signal transduction downstream of axon guidance molecules is essential to steer developing axons. Second messengers including cAMP are key molecules shared by a multitude of signaling pathways and are required for a wide range of cellular processes including axon pathfinding. Yet, how these signaling molecules achieve specificity for each of their downstream pathways remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!