Plants are inevitably grown in presence of sunlight, therefore bound to be exposed to natural UV-B radiation. Several studies have already been conducted with UV-B and medicinal plants and only few studies showed dose dependent variation. The present study aims to find out the variations and adaptation in Chlorophytum borivillianum under two different doses of UV-B radiation; ambient + low (3.2 kJm  d ) and high (7.2 kJm  d ) UV-B dose, denoted as LD and HD, respectively. Reduction in photosynthetic rate was higher at HD, while plants receiving LD displayed nonsignificant variation. During vegetative and reproductive stage, significant reduction (P ≤ 0.001) in stomatal conductance was obtained when exposed to HD-eUV-B. F /F showed more reductions in HD-eUV-B (12.6%) followed by LD-eUV-B (7.9%). Low and high doses of UV-B enhanced the anthocyanin content but the increase was significant in HD, indicates epidermal protection strategy by the plants. Under LD-eUV-B, the content of saponin, a major phytochemical constituent was enhanced by 26%. Phytochemical analysis of roots revealed reduction mostly in fatty acid components whereas the steroidal components (stigmasterol and sarsasapogenin) showed enhancement in response to LD. The study suggests the importance of LD-eUV-B in the stimulation of medicinal compounds in C. borivillianum.

Download full-text PDF

Source
http://dx.doi.org/10.1111/php.13672DOI Listing

Publication Analysis

Top Keywords

doses uv-b
12
uv-b radiation
12
chlorophytum borivillianum
8
low high
8
high doses
8
uv-b
6
photosynthetic biochemical
4
biochemical secondary
4
secondary metabolite
4
metabolite changes
4

Similar Publications

Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions.

View Article and Find Full Text PDF

Melatonin alleviates UV-B stress and enhances phenolic biosynthesis in rosemary (Rosmarinus officinalis) callus.

Physiol Plant

August 2024

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Zhejiang, Hangzhou, China.

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation.

View Article and Find Full Text PDF

The genetic basis of plant response to light and heat stresses had been unveiled, and different molecular mechanisms of leaf cell homeostasis to keep high physiological performances were recognized in grapevine varieties. However, the ability to develop heat stress tolerance strategies must be further elucidated since the morpho-anatomical and physiological traits involved may vary with genotype × environment combination, stress intensity, and duration. A 3-year experiment was conducted on potted plants of Sardinian red grapevine cultivars Cannonau (syn.

View Article and Find Full Text PDF

Effects of Different Doses of sUV-B Exposure on Taxane Compounds' Metabolism in var. .

Int J Mol Sci

June 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.

UV-B is an important environmental factor that differentially affects plant growth and secondary metabolites. The effects of supplemental ultraviolet-B (sUV-B) exposure (T1, 1.40 kJ·m·day; T2, 2.

View Article and Find Full Text PDF

Annexin A1 protects epidermal stem cells against ultraviolet-B irradiation-induced mitochondrial dysfunction.

Arch Dermatol Res

June 2024

Department of Dermatology and Venereology, The Second Affiliated Hospital of Shandong First Medical University, No. 366 Mount Tai Street, Taian, 271000, Shandong Province, China.

Ultraviolet-B (UV-B) radiation overexposure causes function impairment of epidermal stem cells (ESCs). We explored the mechanism of Annexin A1 (ANXA1) ameliorating UV-B-induced ESC mitochondrial dysfunction/cell injury. ESCs were cultured in vitro and irradiated with different doses of UV-B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!