A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combining NDVI and Bacterial Blight Score to Predict Grain Yield in Field Pea. | LitMetric

AI Article Synopsis

  • Field pea is the leading temperate pulse crop, with about 15 million tons produced globally in 2020, and breeding improvements are key for enhancing yields and disease resistance.
  • Genomic selection (GS) is a modern breeding technique that can increase genetic gains for yield, with its effectiveness depending on the accuracy of predictions from different models.
  • The study found that combining traits like aerial high-throughput phenotyping (NDVI) and bacterial blight disease scores (BBSC) in multivariate models improves prediction accuracy for grain yield, with NDVI being the more effective predictor, especially in early growth stages.

Article Abstract

Field pea is the most commonly grown temperate pulse crop, with close to 15 million tons produced globally in 2020. Varieties improved through breeding are important to ensure ongoing improvements in yield and disease resistance. Genomic selection (GS) is a modern breeding approach that could substantially improve the rate of genetic gain for grain yield, and its deployment depends on the prediction accuracy (PA) that can be achieved. In our study, four yield trials representing breeding lines' advancement stages of the breeding program (S0, S1, S2, and S3) were assessed with grain yield, aerial high-throughput phenotyping (normalized difference vegetation index, NDVI), and bacterial blight disease scores (BBSC). Low-to-moderate broad-sense heritability (0.31-0.71) and narrow-sense heritability (0.13-0.71) were observed, as the estimated additive and non-additive genetic components for the three traits varied with the different models fitted. The genetic correlations among the three traits were high, particularly in the S0-S2 stages. NDVI and BBSC were combined to investigate the PA for grain yield by univariate and multivariate GS models, and multivariate models showed higher PA than univariate models in both cross-validation and forward prediction methods. A 6-50% improvement in PA was achieved when multivariate models were deployed. The highest PA was indicated in the forward prediction scenario when the training population consisted of early generation breeding stages with the multivariate models. Both NDVI and BBSC are commonly used traits that could be measured in the early growth stage; however, our study suggested that NDVI is a more useful trait to predict grain yield with high accuracy in the field pea breeding program, especially in diseased trials, through its incorporation into multivariate models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274273PMC
http://dx.doi.org/10.3389/fpls.2022.923381DOI Listing

Publication Analysis

Top Keywords

grain yield
20
multivariate models
20
field pea
12
ndvi bacterial
8
bacterial blight
8
predict grain
8
breeding program
8
three traits
8
ndvi bbsc
8
forward prediction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: