Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity and form an important part of the healthy diet of the human being. Besides providing basic nutrition, they have great potential for boosting human health. The balanced consumption of vegetables is highly recommended for supplementing the human body with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds. However, the production and quality of fresh vegetables are influenced directly or indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits and harvestable yield are the most common effects of HS among vegetable crops. Heat-induced morphological damage, such as poor vegetative growth, leaf tip burning, and rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion, and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation unprofitable. Further studies to trace down the possible physiological and biochemical effects associated with crop failure reveal that the key factors include membrane damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues, which may be the key factors governing heat-induced crop failure. The reproductive stage of plants has extensively been studied for HS-induced abnormalities. Plant reproduction is more sensitive to HS than the vegetative stages, and affects various reproductive processes like pollen germination, pollen load, pollen tube growth, stigma receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound and robust adaptation and mitigation strategies are needed to overcome the adverse impacts of HS at the morphological, physiological, and biochemical levels to ensure the productivity and quality of vegetable crops. Physiological traits such as the stay-green trait, canopy temperature depression, cell membrane thermostability, chlorophyll fluorescence, relative water content, increased reproductive fertility, fruit numbers, and fruit size are important for developing better yielding heat-tolerant varieties/cultivars. Moreover, various molecular approaches such as omics, molecular breeding, and transgenics, have been proved to be useful in enhancing/incorporating tolerance and can be potential tools for developing heat-tolerant varieties/cultivars. Further, these approaches will provide insights into the physiological and molecular mechanisms that govern thermotolerance and pave the way for engineering "designer" vegetable crops for better health and nutritional security. Besides these approaches, agronomic methods are also important for adaptation, escape and mitigation of HS protect and improve yields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274134 | PMC |
http://dx.doi.org/10.3389/fpls.2022.878498 | DOI Listing |
Sci Rep
December 2024
Faculty of Natural Science, Walter Sisulu University, Mthatha, South Africa.
Changing climates threaten crop growth and fodder yields in dryland farming. This study assessed two radish genotypes (LINE 2, ENDURANCE) under three water regimes (W1 = well-watered, W2 = moderate stress, W3 = severe stress) and two leaf harvesting options over two seasons (2021/22 and 2022/23). Key findings revealed that water regime significantly (P < 0.
View Article and Find Full Text PDFSci Rep
December 2024
Hangzhou Academy of Agricultural Sciences, 261 Zhusi Road, Zhuangtang Street, Hangzhou, 310024, Zhejiang, China.
This study determined the effects of the mycelium post-ripening time on the growth of Pleurotus geesteranus and the substrate metabolism. The characteristic indexes and timing reflecting the physiological maturity of P. geesteranus mycelium were identified to facilitate precise cultivation in factories.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics, which has risks for human health. This study aimed to investigate BPA contents in canned fruit and vegetable samples using Gas Chromatography-Mass Spectrometry (GC-MS). Furthermore, health risks were assessed for Iranian adults and children using Monte Carlo simulations.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Biology and Genetics Improvement of Soybean, Zhongshan Biological Breeding Laboratory (ZSBBL), State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Ministry of Agriculture, National Innovation Platform for Soybean Breeding and Industry-Education Integration, Nanjing Agricultural University, Nanjing, 210095, China.
Background: Vegetable soybean is an important legume vegetable. High sucrose content is a significant quality characteristic of vegetable soybean that influences consumers' taste. However, the genetic basis of sucrose content in vegetable soybean is currently unclear.
View Article and Find Full Text PDFSci Rep
December 2024
School of Business, Social and Decision Sciences, Constructor University, Campus Ring 1, Bremen, 28759, Germany.
Physical activity (PA) and fruit and vegetable consumption (FVC) are crucial factors jointly affecting young adults' physical and mental health. However, the psychosocial interactive mechanisms of these behaviors remain understudied. Using a two-wave prospective design over two months, this study investigated the psychological mechanisms underlying multiple health behavior change (MHBC) through a novel two-layer social-cognitive framework, the Compensatory Carry-Over Action Model (CCAM), among 322 Chinese college students (19.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!