Induced pluripotent stem (iPS) cells are widely used as a research tool in regenerative medicine and embryology. In studies related to lens regeneration in the eye, iPS cells have been reported to differentiate into lens epithelial cells (LECs); however, to the best of our knowledge, no study to date has described their formation of three-dimensional cell aggregates. Notably, studies in newts have revealed that iris cells in the eye can dedifferentiate into LECs and regenerate a new lens. Thus, as basic research on lens regeneration, the present study investigated the differentiation of human iris tissue-derived cells and human iris tissue-derived iPS cells into LECs and their formation of three-dimensional cell aggregates using a combination of two-dimensional culture, static suspension culture and rotational suspension culture. The results revealed that three-dimensional cell aggregates were formed and differentiated into LECs expressing αA-crystallin, a specific marker protein for LECs, suggesting that the cell-cell interaction facilitated by cell aggregation may have a critical role in enabling highly efficient differentiation of LECs. However, the present study was unable to achieve transparency in the cell aggregates; therefore, we aim to continue to investigate the degradation of organelles and other materials necessary to make the interior of the formed cell aggregates transparent. Furthermore, we aim to expand on our current work to study the regeneration of the lens and ciliary body as a whole , with the aim of being able to restore focusing function after cataract surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257972PMC
http://dx.doi.org/10.3892/etm.2022.11476DOI Listing

Publication Analysis

Top Keywords

cell aggregates
24
three-dimensional cell
16
ips cells
16
formation three-dimensional
12
cells
8
lens regeneration
8
cells lecs
8
human iris
8
iris tissue-derived
8
suspension culture
8

Similar Publications

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

Toxic protein aggregates are associated with various neurodegenerative diseases, including Huntington's disease (HD). Since no current treatment delays the progression of HD, we develop a mechanistic approach to prevent mutant huntingtin (mHttex1) aggregation. Here, we engineer the ATP-independent cytosolic chaperone PEX19, which targets peroxisomal membrane proteins to peroxisomes, to remove mHttex1 aggregates.

View Article and Find Full Text PDF

Aggregation control of anionic pentamethine cyanine enabling excitation wavelength selective NIR-II fluorescence imaging-guided photodynamic therapy.

Nat Commun

January 2025

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Near-infrared (NIR)-II fluorescence imaging-guided photodynamic therapy (PDT) has shown great potential for precise diagnosis and treatment of tumors in deep tissues; however, its performance is severely limited by the undesired aggregation of photosensitizers and the competitive relationship between fluorescence emission and reactive oxygen species (ROS) generation. Herein, we report an example of an anionic pentamethine cyanine (C5T) photosensitizer for high-performance NIR-II fluorescence imaging-guided PDT. Through the counterion engineering approach, a triphenylphosphine cation (Pco) modified with oligoethylene glycol chain is synthesized and adopted as the counterion of C5T, which can effectively suppress the excessive and disordered aggregation of the resulting C5T-Pco by optimizing the dye amphipathicity and enhancing the cyanine-counterion interactions.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Emergence of Neuroendocrine Tumors in Patients Treated with Androgen Receptor Pathway Inhibitors for Metastatic Prostate Cancer: A Systematic Review and Meta-analysis.

Eur Urol Oncol

January 2025

Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER) Research Group, CHU Lille, Institut Pasteur de Lille, and University of Lille, Lille, France; Department of Urology, Hospital Claude Huriez, CHU Lille, Lille, France. Electronic address:

Background And Objective: It has been shown that androgen receptor pathway inhibitor (ARPIs) treatment for metastatic castration-resistant prostate cancer (mCRPC) improves overall survival rates, but ARPIs appear to be associated with a higher frequency of treatment-related neuroendocrine prostate cancer (t-NEPC). Our aim was to quantify the proportion of prostate adenocarcinoma cases that transition to t-NEPC following ARPI therapy.

Methods: We conducted a comprehensive search of the literature on t-NEPC using databases including MEDLINE and Scopus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!