Hydrogen (H) gas released during battery charging can result in cross-interference for carbon monoxide (CO) sensors used for early fire detection and compromise the integrity of the mine atmospheric monitoring system (AMS). In this study, a series of laboratory-scale and full-scale experiments were conducted to evaluate the responses of different CO sensors to H gas. In the laboratory-scale experiments, constant H concentrations in the airflow, from 100 to 500 ppm, pass through sensors. While in the full-scale experiments, increasing H concentrations generated as a byproduct from charging the batteries at the battery charging station rise to the sensors under different ventilation scenarios. The H concentrations at the CO sensor location were measured using H sensors and were correlated with the CO sensor response. The effects of ventilation and sensor location on the CO sensors responses were also analyzed. The results of this study can help mining companies to select appropriate CO sensors and improve the deployment of these sensors to ensure the safeguard of underground miners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278558 | PMC |
http://dx.doi.org/10.1007/s42461-018-0014-x | DOI Listing |
Nanomicro Lett
January 2025
Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, People's Republic of China.
Building anion-derived solid electrolyte interphase (SEI) with enriched LiF is considered the most promising strategy to address inferior safety features and poor cyclability of lithium-metal batteries (LMBs). Herein, we discover that, instead of direct electron transfer from surface polar groups to bis(trifluoromethanesulfonyl)imide (TFSI) for inducing a LiF-rich SEI, the dipole-induced fluorinated-anion decomposition reaction begins with the adsorption of Li ions and is highly dependent on their mobility on the polar surface. To demonstrate this, a single-layer graphdiyne on MXene (sGDY@MXene) heterostructure has been successfully fabricated and integrated into polypropylene separators.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.
View Article and Find Full Text PDFJ Mater Chem A Mater
January 2025
MESA+ Institute for Nanotechnology, University of Twente 7500 AE Enschede Netherlands
The advancement of rapid-response grid energy storage systems and the widespread adoption of electric vehicles are significantly hindered by the charging times and energy densities associated with current lithium-ion battery technology. In state-of-the-art lithium-ion batteries, graphite is employed as the standard negative electrode material. However, graphite suffers from polarization and deteriorating side-reactions at the high currents needed for fast charging.
View Article and Find Full Text PDFIEEE J Solid-State Circuits
November 2024
Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.
Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!