Objectives: Breast cancer (BC) currently has the highest incidence rate. Epigenetic regulation could alter gene expression and is closely related to BC initiation. This study aimed to develop an alternative splicing (AS)-based prognostic signature and clarify its relevance to the tumor immune microenvironment (TIME) status and immunotherapy of BC.
Methods: Cox regression analysis was conducted to screen for prognosis-related AS events. Thereafter, LASSO with Cox regression analyses was designed to construct a prognostic signature model. Kaplan-Meier survival analysis, receiver operating characteristic curves, and proportional hazard model were then utilized to confirm the prognostic value. Multiple methods were employed to reveal the context of TIME in BC. QPCR, western blotting and immunofluorescence microscopy were carried out to detect myc-associated zinc finger protein (MAZ) expression in different cell lines, and BC and paracancerous tissues.
Results: A total of 1,787 prognosis-related AS events were screened. Eight AS prognostic signatures were constructed with robust predictive accuracy based on the splicing subtypes. Furthermore, the establishment of a quantitative prognostic nomogram and consolidated signature was significantly correlated with TIME diversity and immune checkpoint blockade-related genes. MAZ was detected to be upregulated in BC. Finally, a newly constructed splicing regulatory network model revealed the potential functions of splicing factors.
Conclusions: AS-splicing factor networks may enable a new approach to investigating potential regulatory mechanisms. Moreover, pivotal players in AS events with regards to TIME and efficiency of immunotherapy were uncovered and could facilitate clinical decision-making and individual determination of BC prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274553 | PMC |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766, Jingshi Road, Jinan, 250014, Shandong, People's Republic of China.
This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.
In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.
View Article and Find Full Text PDFAnn Surg Oncol
December 2024
Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.
Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.
Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!