AI Article Synopsis

  • This study emphasizes the importance of understanding the community composition of marine microorganisms to track global changes in the ocean.
  • The research involved re-amplifying 16S rRNA genes from DNA samples collected during an Atlantic Ocean expedition, comparing findings from different primer sets.
  • Results showed that the choice of primers significantly affects the detected community structure, revealing inconsistencies in richness patterns and highlighting the influence of sampling depth and filtering methods.

Article Abstract

Basin-scale biogeographic observations of marine pelagic pro- and eukaryotic communities are necessary to understand forces driving community composition and for providing a baseline to monitor global change. Deep sequencing of rRNA genes provides community composition at high resolution; yet, it is unclear how the choice of primers affects biogeographic patterns. Here, we re-amplified 16S rRNA genes from DNA sampled during R/V Polarstern Cruise ANT28-5 over a latitudinal transect across the Atlantic Ocean from 52°S to 47°N using universal V4-V5 primers and compared the results with those obtained previously with V5-V6 bacteria-specific primers. For validation of our results, we inferred community composition based on 16S rRNA genes of metagenomes from the same stations and single amplified genomes (SAGs) from the Global Ocean Reference Genome (GORG) database. We found that the universal V4-V5 primers retrieved SAR11 clades with similar relative proportions as those found in the GORG database while the V5-V6 primers recovered strongly diverging clade abundances. We confirmed an inverse bell-shaped distance-decay relationship and a latitudinal diversity gradient that did not decline linearly with absolute latitude in the Atlantic Ocean. Patterns were modified by sampling depth, sequencing depth, choice of primers, and abundance filtering. Especially richness patterns were not robust to methodological change. This study offers a detailed picture of the Atlantic Ocean microbiome using a universal set of PCR primers that allow for the conjunction of biogeographical patterns among organisms from different domains of life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273945PMC
http://dx.doi.org/10.3389/fmicb.2022.895875DOI Listing

Publication Analysis

Top Keywords

atlantic ocean
16
community composition
12
rrna genes
12
pro- eukaryotic
8
eukaryotic communities
8
choice primers
8
16s rrna
8
universal v4-v5
8
v4-v5 primers
8
gorg database
8

Similar Publications

Microbial communities are crucial for important ecosystem functions in the open ocean, such as primary production and nutrient cycling. However, few studies have addressed the distribution of microplankton communities in the remote oligotrophic region of the Pacific Ocean. Moreover, the biogeochemical and physical drivers of microbial community structure are not fully understood in these areas.

View Article and Find Full Text PDF

Multiple tipping points in the Earth system could be triggered when global warming exceeds specific thresholds. However, the degree of their impact on the East Asian hydroclimate remains uncertain due to the lack of quantitative rainfall records. Here we present an ensemble reconstruction of East Asian summer monsoon (EASM) rainfall since the Last Glacial Maximum (LGM) using nine statistical and machine learning methods based on multi-proxy records from a maar lake in southern China.

View Article and Find Full Text PDF

Mid-water column turbulence has been shown to cause elevated vertical nutrient flux at the shelf edge in the northeastern North Sea. Here, we demonstrate that phytoplankton communities in this region tend to be dominated by larger cells (estimated from percentage of chlorophyll captured on a 10 μm filter) than beyond the shelf edge. F/F (PSII electron transport capacity) corrected for photoinhibition in the surface layer correlated in this study with the percentage of chlorophyll captured on a 10 µm filter (assumed to be large cells), suggesting that the phytoplankton community was responding to increased nutrients in the euphotic zone by increasing photosynthetic efficiency and altering community composition.

View Article and Find Full Text PDF

Microcystin (MC), a hepatotoxin produced by cyanobacteria, was introduced into the Indian River Lagoon (IRL), Florida, in 2005 through freshwater outflows. Since then, MC has been detected in humans, domestic animals, and wildlife in the lagoon. Potential public health effects associated with MC exposure along the IRL include an increased risk of non-alcoholic liver disease among area residents.

View Article and Find Full Text PDF

Background/objectives: The colonization history of house mice reflects the maritime history of humans that passively transported them worldwide. We investigated western house mouse colonization in the Atlantic region through studies of mitochondrial D-loop DNA sequences from modern specimens.

Methods: We assembled a dataset of 758 haplotypes derived from 2765 mice from 47 countries/oceanic archipelagos (a combination of new and published data).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!