Purpose Of Review: Recognition of skin findings associated with tumor predisposition syndromes can prompt early evaluation and surveillance and improve management. Additionally, knowing when to test and when to defer performing genetic testing can streamline management. This article reviews tumor predisposition syndromes with recently characterized skin findings and disorders for which early recognition and counseling can impact the course of disease.
Recent Findings: Café au lait macules (CALMs) are important in many tumor predisposition syndromes, and 'atypical' CALMs are associated with constitutional mismatch repair deficiency and Fanconi anemia. Melanoma predisposition syndromes caused by pathogenic variants in POT1 and BAP1 are more recently described, and both are associated with Spitzoid tumors. Somatic pathogenic variants can cause segmental nevoid basal cell carcinoma syndrome and a mosaic form of Peutz-Jeghers syndrome. Patients with PTEN hamartoma syndrome have increased risk for melanoma but this might not occur until adulthood.
Summary: The cutaneous manifestations of tumor predisposition syndromes can aid diagnosis. Early photoprotection is key to modifying a main risk factor for skin cancer in many of these syndromes. Implementing surveillance guidelines facilitates early detection of tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MOP.0000000000001144 | DOI Listing |
Transl Cancer Res
December 2024
Department of Biomedical Engineering, School of Life Sciences, Guangxi Medical University, Nanning, China.
Background: The persistently high mortality and morbidity rates of hepatocellular carcinoma (HCC) remain a global concern. Notably, the disruptions in mitochondrial cholesterol metabolism (MCM) play a pivotal role in the progression and development of HCC, underscoring the significance of this metabolic pathway in the disease's etiology. The purpose of this research was to investigate genes associated with MCM and develop a model for predicting the prognostic features of patients with HCC.
View Article and Find Full Text PDFNarra J
December 2024
Department of Pediatric, Dr. Zainoel Abidin Hospital, Banda Aceh, Indonesia.
Sepsis is a systemic infection that significantly causes morbidity and mortality among neonates, which is associated with immature immune response. Variations in the tumor necrosis factor-alpha gene () -308G/A may be linked to neonatal sepsis mortality by modulating interleukins (ILs) involved in the immune response cascade, such as IL-6. The aim of this study was to investigate the association between -308G/A gene variation and IL-6 level with mortality of neonatal sepsis.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan Province, 610041, China.
The polymorphic microbiome is considered a new hallmark of cancer. Advances in High-Throughput Sequencing have fostered rapid developments in microbiome research. The interaction between cancer cells, immune cells, and microbiota is defined as the immuno-oncology microbiome (IOM) axis.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan.
Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!