Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Orishimo, KF, Kremenic, IJ, Mullaney, MJ, Fukunaga, T, Serio, N, and McHugh, MP. Role of pelvis and trunk biomechanics in generating ball velocity in baseball pitching. J Strength Cond Res 37(3): 623-628, 2023-The purpose of this study was to determine the impact of pelvis rotation velocity, trunk rotation velocity, and hip-shoulder separation on ball velocity during baseball pitching. Fastball pitching kinematics were recorded in 29 male pitchers (age 17 ± 2 years, 23 high school, 6 college). Pelvis and trunk angular velocities and hip-shoulder separation were calculated and averaged for the 3 fastest pitches. Associations between peak pelvis velocity, peak trunk velocity, hip-shoulder separation at foot contact, and ball velocity were assessed using Pearson correlation coefficients and multiple regression. The average ball velocity was 33.5 ± 2.8 m·s -1 . The average hip-shoulder separation at foot contact was 50 ± 12°. The peak pelvis velocity (596 ± 88°·s -1 ) occurred at 12 ± 11% of the time from stride foot contact to ball release, with the peak trunk velocity (959 ± 120°·s -1 ) occurring at 36 ± 11%. Peak trunk velocity was predictive of ball velocity ( p = 0.002), with 25% of the variability in ball velocity explained. No combination of factors further explained ball velocity. Hip-shoulder separation at foot contact (17%, p = 0.027), peak pelvis velocity (23%, p = 0.008), and the timing of peak pelvis velocity (16%, p = 0.031) individually predicted peak trunk velocity. The combination of peak pelvis velocity, hip-shoulder separation at foot contact, and the timing of peak trunk velocity explained 55% of the variability in trunk rotation velocity ( p < 0.001). These data highlight the importance of interactions between pelvis and trunk for maximizing velocity in pitching. Training to improve pelvis-trunk axial dissociation may increase maximal trunk rotation velocity and thereby increase ball velocity without increasing training load on the shoulder and elbow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000004314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!