Inspired by many living creatures with adjustment of shape and color in an ever-changing environment, color changeable shape memory hydrogels are designed and expected to be potential candidates in the fields spanning from anti-counterfeiting to biomedical devices. However, they normally require complex synthesis, and more importantly, the cooling-induced shape recovery hydrogel is still rare and in its infancy so far. Herein, a unique color changeable shape memory hydrogel by simply incorporating polyvinylalcohol and copper acetate into covalent polyacrylamide network is developed. As core functional element, copper ions serve as reversible crosslinks after heating to achieve excellent cooling-triggered shape memory effect, color shifting and self-healing behavior, showing significant potential in diverse applications like grabbing, information encryption, and biomimetic designs. This work may guide the development of cooling-triggered smart hydrogels for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200401 | DOI Listing |
J Funct Biomater
December 2024
Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada.
Intraocular lenses (IOLs) play a pivotal role in restoring vision following cataract surgery. The evolution of polymeric biomaterials has been central to addressing challenges such as biocompatibility, optical clarity, mechanical stability, and resistance to opacification. This review explores essential requirements for IOL biomaterials, emphasizing their ability to mitigate complications like posterior capsule opacification (PCO) and dysphotopsias while maintaining long-term durability and visual quality.
View Article and Find Full Text PDFGels
November 2024
Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea.
Shape-memory materials are widely utilized in biomedical devices and tissue engineering, particularly for their ability to undergo predefined shape changes in response to external stimuli. In this study, a shape-transformable organohydrogel was developed by incorporating a gallium mesh into a polyacrylamide/alginate/glycerol matrix. The gallium mesh, which transitions between solid and liquid states at moderate temperatures (~29.
View Article and Find Full Text PDFGels
November 2024
Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).
View Article and Find Full Text PDFAnn Ital Chir
December 2024
Department of Cardiovascular Surgery, Shaoxing People's Hospital, 312000 Shaoxing, Zhejiang, China.
Int J Biol Macromol
December 2024
Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China.
Lignin, a renewable and biodegradable polymer, offers a promising alternative to petroleum-based polyols for polyurethane elastomer synthesis. However, its complex structure poses challenges, such as poor dispersibility and reactivity. This study introduces a novel one-step and solvent-free method for synthesizing lignin-containing polyurethane elastomers (SF-LPUes-ONE) with a high lignin substitution rate of at least 30 wt%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!