Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative and hypoxic stresses are associated with the degeneration of both motor neurons and skeletal muscles in amyotrophic lateral sclerosis (ALS). In vivo bioluminescent imaging is used to monitor cellular responses to oxidative and hypoxic stresses in living ALS model mice bearing G93A-human Cu/Zn superoxide dismutase (SOD1) longitudinally using the IVIS spectrum imaging system. Double transgenic mice bearing both Keap1-dependent oxidative stress detector No-48 (OKD48) and G93A-SOD1 are useful for in vivo imaging of oxidative stress in ALS. We developed a bioluminescence resonance energy transfer (BRET) probe that is regulated by HIF-1α-specific ubiquitin-proteasome system. G93A-SOD1 mice injected with the BRET probe are useful to investigate the spatiotemporal responses to hypoxic stress in ALS. In this chapter, we introduce a practical protocol of in vivo imaging of both oxidative and hypoxic stress in ALS model mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2473-9_22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!