This chapter introduces unique methodology of antibacterial activity evaluation of nanoparticles in both solution and thin films. Nanoparticles of ZnO, TiO, and CuO are synthesized via the sol-gel method. Antibacterial tests are carried out against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria using disk diffusion and bioluminescence. To perform antibacterial tests on thin films and to overcome bacterial strains recuperation on the supports, a new method of bacterial detaching from the slides is developed based on French standard NF EN 14561.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2473-9_4 | DOI Listing |
Microsc Res Tech
January 2025
Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
SnO thin films were deposited on Si substrates by radio frequency (RF) magnetron sputtering technique, and the effects of different sputtering power (60-90 W) on the structural, surface morphological, and electrical properties of the film were investigated with XRD, Raman, AFM, SEM, and fore point probe. The deposited SnO film at lower RF was amorphous, while well-defined intense XRD signals at higher RF power indicated significant improvement in crystalline nature. E and A vibrating modes related to SnO were clearly observed in the Raman spectra.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core technology for preparing high-quality materials as a key enabler of next-generation microelectronics and quantum information system. Progress in epitaxy has been expanding the choice of materials and their heterostructures beyond the combinations limited by materials compatibility. However, the improvement of material quality, physical implementation of materials with unique properties, and integration of incommensurate materials in an architecture have been the challenging issues.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
MoS coatings are used extensively in aerospace and defense applications due to their ultralow friction and high wear resistance. Burnished and resin-bonded MoS coatings are commonly used in these applications due to simplicity in deposition and history of use, despite issues with consistency in coating properties and performance. Physical vapor deposition (PVD) of MoS thin films has emerged as a process alternative in the past 50 years, promising far greater control over film structure and composition but at a greater cost.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.
In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.
View Article and Find Full Text PDFACS Nano
January 2025
Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
The reduced dimensionality of thin transition metal dihalide films on single-crystal surfaces unlocks a diverse range of magnetic and electronic properties. However, achieving stoichiometric monolayer islands requires precise control over the growth conditions. In this study, we employ scanning probe microscopy to investigate the growth of MnI on Ag(111) via single-crucible evaporation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!