Karlodinium veneficum is a toxic benthic globally distributed dinoflagellate which has direct impacts on human health and the environment. Early and accurate detection of this harmful algal bloom-forming species could be useful for potential risks monitoring and management. In the present work, a real-time PCR targeting the internal transcribed spacer ribosomal DNA region for the specific detection and absolute quantification of K. veneficum was designed. Then, the assay conditions were adjusted and validated. The developed qPCR was highly specific for the target species and displayed no cross-reactivity with closely related dinoflagellates and/or other microalgal species commonly distributed along the Tunisian coast. Its lowest detection limit was 5 rDNA copies per reaction, which is often considered satisfying. qPCR assay enumeration accuracy was evaluated using artificially inoculated environmental samples. The comparison of the cell abundance estimates obtained by qPCR assay with the theoretical estimates showed no statistically significant difference across a range of concentrations. We suggest that the qPCR approach developed in the present study may be a valuable tool to investigate the distribution and seasonal dynamics of K. veneficum in marine environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-21667-z | DOI Listing |
Anal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai 200011, China.
Breast cancer is one of the malignant tumors that seriously threaten women's health, and early diagnosis and detection of breast cancer are crucial for effective treatment. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is an important diagnostic tool that allows for the dynamic observation of blood flow characteristics of breast tumors, including small lesions within the affected tissue. Currently, it is widely used in clinical practice and has been shown promising prospects.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Pfizer Inc, New York, New York.
Background: Prediction models for atrial fibrillation (AF) may enable earlier detection and guideline-directed treatment decisions. However, model bias may lead to inaccurate predictions and unintended consequences.
Objective: The purpose of this study was to validate, assess bias, and improve generalizability of "UNAFIED-10," a 2-year, 10-variable predictive model of undiagnosed AF in a national data set (originally developed using the Indiana Network for Patient Care regional data).
Breast Cancer (Auckl)
January 2025
Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Background: Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy.
Objectives: We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology.
Replication timing (RT) allows us to analyze temporal patterns of genome-wide replication, i.e., if genes replicate early or late during the S-phase of the cell cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!