Monolayer 2D semiconductors provide an attractive option for valleytronics due to valley-addressability. But the short valley-polarization lifetimes for excitons have hindered potential valleytronic applications. In this paper, we demonstrate a strategy for prolonging the valley-polarization lifetime by converting excitons to trions through efficient gate control and exploiting the much longer valley-polarization lifetimes for trions than for excitons. At charge neutrality, the valley lifetime of monolayer MoTe increases by a factor of 1000 to the order of nanoseconds from excitons to trions. The exciton-to-trion conversion changes the dominant depolarization mechanism from the fast electron-hole exchange for excitons to the slow spin-flip process for trions. Moreover, the degree of valley polarization increases to 38% for excitons and 33% for trions through electrical manipulation. Our results reveal the depolarization dynamics and the interplay of various depolarization channels for excitons and trions, providing an effective strategy for prolonging the valley polarization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283389 | PMC |
http://dx.doi.org/10.1038/s41467-022-31672-y | DOI Listing |
Ecol Evol
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Potsdam Germany.
Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Sciences, Northeastern University, Shenyang, 110819, China.
In this work, using first-principles calculations, we predict a promising class of two-dimensional ferromagnetic semiconductors, namely Janus PrXY (X ≠ Y = Cl, Br, I) monolayers. Through first-principles calculations, we found that PrXY monolayers have excellent dynamic and thermal stability, and their band structures, influenced by magnetic exchange and spin-orbital coupling, exhibit significant valley polarization. Between and - valleys, the Berry curvature values are opposite to each other, resulting in the anomalous valley Hall effect.
View Article and Find Full Text PDFUsing the first principle calculations, we propose a boron and nitrogen cluster incorporated graphene system for efficient valley polarization. The broken spatial inversion symmetry results in high Berry curvature at and valleys of the hexagonal Brillouin zone in this semiconducting system. The consideration of excitonic quasiparticles within the approximation along with their scattering processes using the many-body Bethe-Salpeter equation gives rise to an optical gap of 1.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
Bending loss is one of the serious problems for constructing nanophotonic integrated circuits. Recently, many works reported that valley photonic crystals (VPhCs) enable significantly high transmission via 120-degree sharp bends. However, it is unclear whether the high bend-transmission results directly from the valley-photonic effects, which are based on the breaking of inversion symmetry.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Physics and Electrical Engineering, Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
Exploring valleytronics in two-dimensional materials is of great significance for the development of advanced information devices. In this study, we investigate the valley polarization and electronic properties of V-doped 2H-phase Janus MoSeTe by using first-principles calculations. Our results reveal a remarkable valley spin splitting up to 60 meV, driven by the breaking of time-reversal symmetry due to the magnetic effect of V 3d orbitals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!