Rotator cuff repair remains a challenge clinically due to the high retear rate after surgical intervention. There is a significant need to develop functional biomaterials facilitating tendon-to-bone integration. In this study, hydroxyapatite (HA) incorporated polylactic acid (PLLA) aligned nanofibrous membranes were fabricated by electrospinning as a low-cost sustainable rotator cuff patch. The morphology, physical, mechanical and in vitro cell assays of the nanofibrous membranes were characterized. The results showed that the nanofibrous membrane maintained a rough surface and weakened hydrophobicity. It has excellent cytocompatibility, and the cells were oriented along the direction of fiber arrangement. What's more, the PLLA-HA nanofibrous membrane could increase the alkaline phosphatase (ALP) expression in rat bone marrow mesenchymal stem cells (BMSCs), indicating that the electrospinning PLLA-HA nanofibrous membrane can better induce the bone formation of rat BMSCs cells. When the mass ratio of PLLA to HA exceeds 3: 1, with the increase of the HA content, the patch showed rising induction ability. The results suggested that electrospinning PLLA-HA nanofibrous membranes are an ideal patch for promoting tendon-bone healing and reducing the secondary tear rate. Furthermore, the use of biodegradable polymers and low-cost preparation methods presented the possibility for commercial production of these nanofibrous membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.07.061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!