Background: It has been known that chronic rhinosinusitis with nasal polyps (CRSwNP) is a type 2 inflammation-dominated disease; however, the reasons causing such type of mucosal inflammation in CRSwNP are not well elucidated.
Objective: We sought to investigate the role of microRNA-21-5p (miR-21-5p) in regulating mucosal type 2 inflammation in CRSwNP.
Methods: miR-21-5p expression was detected in nasal mucosa of patients with CRSwNP. Correlations between miR-21-5p and indicators of type 2 inflammation were further analyzed. miR-21 knockout mice were used to explore the role of miR-21-5p in a murine model of eosinophilic (E) CRSwNP. Target gene of miR-21-5p related to type 2 inflammation in CRSwNP was identified.
Results: The upregulated miR-21-5p in the nasal mucosa of patients with CRSwNP, compared with control subjects, was expressed higher in patients with ECRSwNP than in patients with nonECRSwNP. miR-21-5p expression was positively correlated with mucosal eosinophil infiltrations and the expression of type 2 inflammatory cytokines. In the CRSwNP mice, miR-21 knockout significantly attenuated type 2 inflammation, as indicated by eosinophil infiltrations and expression of cytokines/chemokines in nasal mucosa and lavage fluid; moreover, genes associated with type 2 inflammation were extensively downregulated at the transcriptome level in miR-21 knockout mice. Glucagon-like peptide-1 receptor, which was negatively correlated with miR-21-5p expression in human nasal mucosa, was identified as the target of miR-21-5p. Overexpression of miR-21-5p induced IL-33 expression, whereas glucagon-like peptide-1 receptor agonist decreased IL-33 production in airway epithelial cells.
Conclusions: miR-21-5p aggravates type 2 inflammation in the nasal mucosa of patients with CRSwNP via targeting glucagon-like peptide-1 receptor/IL-33 signaling, which may be a potential therapeutic target for CRSwNP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2022.05.030 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
While recent studies suggested a potential causal link between type 1 diabetes mellitus (T1DM) but not type 2 diabetes mellitus (T2DM) and idiopathic pulmonary fibrosis (IPF), the involved mechanism remains unclear. Here, using a Mendelian randomization (MR) approach, we verified the causal relationship between the two types of diabetes mellitus and IPF and investigated the possible role of inflammation in the association between diabetes mellitus and IPF. Based on genome-wide association study (GWAS) summary data of T1DM, T2DM, and IPF, the univariable MR, multivariable MR (MVMR), and mediation MR were successively used to analyze the causal relationship.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFFASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2025
Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233.
Heart failure (HF) is a leading cause of death worldwide. We have shown that pressure overload (PO)-induced inflammatory cell recruitment leads to heart failure in IL-10 knockout (KO) mice. However, it's unclear if PO-induced inflammatory cells also target the gut mucosa, causing gut dysbiosis and leakage.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
January 2025
Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky, USA.
Background: Our previous study demonstrated that alcohol induced the expression of the α4 subunit of nicotinic acetylcholine receptors (nAChRs) in the livers of wild type mice (WT), and that whole-body α4 nAChR knockout mice (α4KO) showed protection against alcohol-induced steatosis, inflammation, and injury. Based on these findings, we hypothesized that hepatocyte-specific α4 nAChRs may directly contribute to the detrimental effects of alcohol on the liver.
Methods: Hepatocyte-specific α4 knockout mice (α4HepKO) were generated, and the absence of α4 nAChR was confirmed through PCR of genomic DNA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!