A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interplay of magnetic states and hyperfine fields of iron dimers on MgO(001). | LitMetric

Individual nuclear spin states can have very long lifetimes and could be useful as qubits. Progress in this direction was achieved on MgO/Ag(001) via detection of the hyperfine interaction (HFI) of Fe, Ti and Cu adatoms using scanning tunneling microscopy. Previously, we systematically quantified from first-principles the HFI for the whole series of 3d transition adatoms (Sc-Cu) deposited on various ultra-thin insulators, establishing the trends of the computed HFI with respect to the filling of the magnetic s- and d-orbitals of the adatoms and on the bonding with the substrate. Here we explore the case of dimers by investigating the correlation between the HFI and the magnetic state of free standing Fe dimers, single Fe adatoms and dimers deposited on a bilayer of MgO(001). We find that the magnitude of the HFI can be controlled by switching the magnetic state of the dimers. For short Fe-Fe distances, the antiferromagnetic state enhances the HFI with respect to that of the ferromagnetic state. By increasing the distance between the magnetic atoms, a transition toward the opposite behavior is observed. Furthermore, we demonstrate the ability to substantially modify the HFI by atomic control of the location of the adatoms on the substrate. Our results establish the limits of applicability of the usual hyperfine hamiltonian and we propose an extension based on multiple scattering processes.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac8135DOI Listing

Publication Analysis

Top Keywords

hfi respect
8
magnetic state
8
hfi
7
dimers
5
adatoms
5
interplay magnetic
4
magnetic states
4
states hyperfine
4
hyperfine fields
4
fields iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!