Carbon nitride (g-CN) has broad application prospects in photocatalytic hydrogen production, but its photocatalytic efficiency is not ideal because of the rapid recombination of photogenerated electrons and holes. Herein, we developed a green strategy to fabricate hydroxyls and carbon-bridging co-modified g-CN (CCN-OH) through a one-pot copolymerization and hydrothermal treatment. Experiments and density functional theory (DFT) calculations illustrated that carbon substitution of partial bridge nitrogen can improve the degree of electron delocalization to enhance the electron supply capacity of g-CN, and the exsitence of the electron-withdrawing OH group induces electron migration from carbon nitride to hydroxyl group, which further improves the efficiency of photogenerated charge separation. In addition, CCN-OH possess narrower band structure, resulting in an increased visible light utilization efficiency. The as-synthesized CCN-OH9 samples displayed an excellent photocatalytic activity for degradation of tetracycline with apparent reaction rate constant (k) of 0.018 min and photocatalytic hydrogen evolution of 1880.3 μmol gh, which was respectively 2.2 and 9.8 times higher than that of CN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.07.001 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Graphitic carbon nitride (g-CN) is a useful photocatalyst applied in various areas. However, it has some disadvantages that limit its applications. Therefore, doping and the construction of a heterojunction are beneficial methods to overcome these drawbacks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan.
This study examines the viability of using graphitic-Carbon Nitride (g-CN) nanomaterial as shale stabilizer drilling fluid additive having applications in the oil and gas wells drilling. Shale stability is important especially when drilling horizontal and extended reach wells with water-based muds (WBM) to tap unconventional reservoirs namely shale oil and shale gas. For this study, the g-CN nanomaterial was produced by melamine pyrolysis, and characterized by X-Ray Diffraction, Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy techniques.
View Article and Find Full Text PDFLangmuir
January 2025
College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
Morphology regulation and element doping are effective means to improving the photocatalytic performance of graphite-phase carbon nitride (g-CN). In this article, using melamine and zinc chloride as raw materials, a novel kind of Zn/Cl-doped hollow microtubular g-CN (Zn-HT-CN) by a hydrothermal method was developed. The structure and morphology of Zn-HT-CN and reference samples were characterized by X-ray diffraction patterns (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), etc.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Fisicoquímica, X5000HUA Córdoba, Argentina.
Metallic lithium plays an important role in the development of next-generation lithium metal-based batteries. However, the uncontrolled growth of lithium dendrites limits the use of lithium metal as an anode. In this context, a stable solid electrolyte interphase (SEI) is crucial for regulating dendrite formation, stability, and cyclability of lithium metal anodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!