In this work, based on the potential anti-AD molecule previously studied by our group, we continue to introduce different substituents at different positions to improve both drug-like properties and on target activities. 33 N-salicyloyl tryptamine-carbamate hybrids were designed, synthesized and evaluated as cholinesterase inhibitors. H327 was the most potent BChE inhibitor (eqBChE IC = 0.057 ± 0.005 μM), and showed threefold improved inhibitory potency than the positive drug rivastigmine (eqBChE IC = 0.19 ± 0.001 μM). In addition, H327 as a pseudo-irreversible BChE inhibitor was endowed with neuroprotective, antioxidative and anti-neuroinflammatory properties. Cytotoxicity and acute toxicity tests confirmed the safety of compound H327. The pharmacokinetics study showed that compound H327 had a longer T time and higher bioavailability than the lead compound 1 g. Compound H327 was able to cross the blood-brain barrier (BBB) in vivo. Moreover, the behavioral tests showed that compound H327 could significantly improve scopolamine-induced cognitive impairment in vivo. Overall, these results demonstrated that compound H327 is a promising multi-target agent for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2022.105993 | DOI Listing |
Bioorg Chem
October 2022
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China. Electronic address:
In this work, based on the potential anti-AD molecule previously studied by our group, we continue to introduce different substituents at different positions to improve both drug-like properties and on target activities. 33 N-salicyloyl tryptamine-carbamate hybrids were designed, synthesized and evaluated as cholinesterase inhibitors. H327 was the most potent BChE inhibitor (eqBChE IC = 0.
View Article and Find Full Text PDFAm J Physiol
February 1991
Department of Medicine, University of Cincinnati, Ohio 45267-0542.
The relationships of human platelet thromboxane A2-prostaglandin H2 (TxA2/PGH2) receptor occupation as assessed by equilibrium binding of the TxA2/PGH2 agonist [125I]BOP to the functional responses of I-BOP-induced platelet shape change and aggregation were determined before and after specific, irreversible inactivation of platelet TxA2/PGH2 receptors with the photolyzable TxA2/PGH2 antagonist I-PTA-PON3. I-BOP stimulated platelet shape change and aggregation with concentrations producing a half-maximal response of 173 +/- 39 pM (n = 4) and 1.8 +/- 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!