Understanding the relationship between protein structure and experimental data is crucial for utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be performed at multiple laboratory frame SID collision energies. These energy-resolved MS/MS experiments have shown that the profile of the breakages depends on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) from energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each type of subcomplex as a function of SID acceleration energy. We previously determined that these AE values for specific interfaces correlated with structural features related to interface strength. In this study, we further examined the structural relationships by developing a method to predict the full ERMS plot from the structure, rather than extracting a single value. First, we noted that for proteins with multiple interface types, we could reproduce the correct shapes of breakdown curves, further confirming previous structural hypotheses. Next, we demonstrated that interface size and energy density (measured using Rosetta) correlated with data derived from the ERMS plot ( = 0.71). Furthermore, based on this trend, we used native crystal structures to predict ERMS. The majority of predictions resulted in good agreement, and the average root-mean-square error was 0.20 for the 20 complexes in our data set. We also show that if additional information on cleavage as a function of collision energy could be obtained, the accuracy of predictions improved further. Finally, we demonstrated that ERMS prediction results were better for the native than for inaccurate models in 17/20 cases. An application to run this simulation has been developed in Rosetta, which is freely available for use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672976PMC
http://dx.doi.org/10.1021/acs.analchem.2c01869DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
energy-resolved mass
8
surface-induced dissociation
8
experimental data
8
acceleration energy
8
erms plot
8
data
6
structural
5
energy
5
erms
5

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!