In this study, an efficient method for the synthesis of sulfur-substituted 4-enyl-2-pyrrolidones was successfully developed through AIBN-promoted highly selective 5-exo-dig radical cascade cyclization of 1,6-enynes with sulfur sources with the aid of theoretical and computational chemistry. This protocol enables the first practical and green synthesis of an array of 4-enyl-2-pyrrolidones in moderate-to-good yields with broad substrate scopes and high regioselectivities (>20:1). Moreover, excellent stereoselectivities have also been achieved (up to >20:1, /). Most interestingly, when the sulfur source is electron-rich thiophenol, reverse stereoselectivities were discovered. In addition, the control experiments indicate that the cascade cyclization is realized by radical reactions, and the detailed reaction mechanism and regioselectivities have also been explained by theoretical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c00343DOI Listing

Publication Analysis

Top Keywords

cascade cyclization
12
highly selective
8
radical cascade
8
cyclization 16-enynes
8
sulfur-substituted 4-enyl-2-pyrrolidones
8
computational chemistry-assisted
4
chemistry-assisted highly
4
selective radical
4
16-enynes thiols
4
thiols access
4

Similar Publications

Ultrasound-assisted and Efficient Multicomponent Synthesis of 4H-Pyran Derivatives catalyzed by LiOH.H2O in Water.

Curr Org Synth

January 2025

Laboratoire de Chimie Organique (LR17ES08), Faculté des Sciences de Sfax, University of Sfax, Route de Soukra Km 3.5, BP 1171, 3000, Sfax, Tunisia.

Aim And Objective: It is well established that 4H-pyran derivatives hold a significant position in synthetic organic chemistry due to their diverse biological and pharmacological properties. This work aims to introduce a novel synthetic pathway for highly functionalized 4H-pyran derivatives, achieved through a 1,4-Michael addition followed by a cascade cyclization. This reaction is catalyzed by LiOH·H2O under ultrasonic irradiation in water, offering an efficient and environmentally friendly approach.

View Article and Find Full Text PDF

A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.

View Article and Find Full Text PDF

1,4-Dibenzodiazepines, an important component of nitrogen-containing heterocycles, are widely present in drugs. Herein, we developed a photochemical radical cascade cyclization reaction of isocyanides with α-carbonyl bromides under mild conditions. A sequence of 11-alkyl-substituted 1,4-dibenzodiazepines were produced in 53%-85% yields, demonstrating excellent tolerance towards various functional groups.

View Article and Find Full Text PDF

Herein, we report a Cu-DTBP-catalyzed [3 + 2] cycloaddition reaction between 1-(2-oxo-2-phenylethyl)--indole-3-aldehyde and arylalkene, using DMF as the solvent. Under relatively mild reaction conditions, a series of indole compounds were synthesized in moderate yields (up to 73%). This protocol features good functional group tolerance and high atom economy.

View Article and Find Full Text PDF

A novel silver-catalyzed cascade radical isonitrile insertion and defluorinative cyclization have been developed to synthesize CFH- and phosphinoyl-containing quinolines from -isocyanyl α-trifluoromethylstyrenes. The reaction proceeded under redox-neutral conditions and allowed the construction of a highly attractive quinoline ring system, with the simultaneous formation of the CFH group and introduction of various phosphinoyl groups in a single transformation, showing operational simplicity, a wide substrate scope, good tolerance for functional groups, and remarkable atom-/stepeconomy. Mechanistic studies indicated that the reaction is likely to involve the participation of P-centered radicals and key carbanion intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!