Dynamic observation of the behaviors of nanomaterials in the cellular environment is of great significance in mechanistic investigations on nanomaterial-based diagnostics and therapeutics. Realizing label-free observations with nanometer resolution is necessary but still has major challenges. Herein, we propose a NanoSuit-assisted liquid-cell scanning electron microscopy (NanoSuit-LCSEM) method that enables imaging of the behaviors of nanoparticles in living cells. Taking A549 cells and gold nanoparticles (AuNPs) as a cell-nanoparticle interaction model, the NanoSuit-LCSEM method showed a significantly improved resolution to 10 nm, which is high enough to distinguish single and two adjacent 30 nm AuNPs in cells. The continuous observation time for living cells is extended to 30 min, and the trajectories and velocities for the transmembrane movement of AuNP aggregates are obtained. This study provides a new approach for dynamic observation of nanomaterials in intact living cells and will greatly benefit the interdisciplinary research of nanomaterials, nanomedicine, and nanotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c01251 | DOI Listing |
Biophys J
January 2025
Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany. Electronic address:
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
Background: Mycobacterium avium complex (MAC) is a common pathogen causing non-tuberculous mycobacterial infections, primarily affecting the lungs. Disseminated MAC disease occurs mainly in immunocompromised individuals, such as those with acquired immunodeficiency syndrome, hematological malignancies, or those positive for anti-interferon-γ antibodies. However, its occurrence in solid organ transplant recipients is uncommon.
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:
Microbial cell factories provide sustainable alternatives to petroleum-based chemical production using cost-effective substrates. A deep understanding of their metabolism is essential to harness their potential along with continuous efforts to improve productivity and yield. However, the construction and evaluation of numerous genetic variants are time-consuming and labor-intensive.
View Article and Find Full Text PDFVirus Res
January 2025
Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:
Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.
View Article and Find Full Text PDFCells Dev
January 2025
Quantitative and Imaging Biology, International Research Collaboration Center (IRCC), National Institutes of Natural Sciences (NINS), Japan; Trans-Scale Biology Center, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Japan. Electronic address:
Collective cell migration is a fundamental process underlying various biological phenomena, including embryonic development and cancer cell invasion. The cohesive yet flexible movement of cell collectives largely depends on the coordinated regulation of cell-cell and cell-substrate adhesions. In this review, we summarize the regulation of key cell-cell junction components, such as cadherins and zonula occludens proteins during collective cell migration, with a particular focus on the recently discovered multifaceted roles of ZO-1 in both cell-cell and cell-substrate interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!