Designing and fabricating well-aligned metal-organic framework nanoarrays (MOF NAs) with high electrocatalytic activity and durability for water oxidation at large current density remain huge challenges. Here the vertical NiFc-MOF NAs constructed from agaric-like nanosheets were fabricated by introducing a ligand containing an exotic Fe atom to coordinate with Ni ion using Ni(OH) NAs as a self-sacrificing template. The NiFc-MOF NAs exhibited superior water oxidation performance with a very low overpotential of 161 mV at the current density of 10 mA cm. Chronoamperometry was tested at an overpotential of 250 mV, which delivered an initial industrial-grade current density of 702 mA cm and still remained at 694 mA cm after 24 h. Furthermore, it possessed fast reaction kinetics with a small Tafel slope of 29.5 mV dec. The superior electrocatalytic performance can be ascribed to the structural advantage of vertically grown agaric-like NAs and the synergistic electron coupling between Ni and Fe atoms, namely, electron transfer from Ni to Fe atoms in NiFc-MOF NAs. The exposed density and valence state of active Ni sites were synchronously increased. Furthermore, the energy barrier for the adsorption/desorption of oxygenated intermediates was ultimately optimized for water oxidation. This work provides a novelty orientation to accelerate electrocatalytic performance of MOF NAs by introducing self-sacrificing templates containing one metal and synergistic ligand containing dissimilar metal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01756 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.
As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
The applicability of cellulose and its derivatives is greatly depends on their attributes such as aspect ratio, morphology, surface chemistry, crystallinity, as well as their thermal and mechanical properties. However, these attributes can alter according to the utilized raw material, size classifications, extraction techniques, or fibrillation methods. Among these, the effect of raw material particle size on cellulose properties has received limited attention in scientific studies.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Mechanical Engineering, Yeungnam University Gyeongsan-si 38451 Gyeongbuk Republic of Korea
In this study, dye/polymer matrix-stabilized β-FeOOH nanomaterials were fabricated for therapeutic applications. Rh-B/F127@β-FeOOH nanomaterials were synthesized using two different methods: co-precipitation (CoP) and hydrothermal (HT) methods. The as-synthesized nanoparticles were characterized using various spectroscopic techniques, including FT-IR, UV-Vis, PL, XRD, HR-TEM, and XPS analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!