Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Short-chain fatty acids contribute to normal bowel function and prevent bacterial infections. In particular, butyrate is a promising candidate that plays an important role in regulating the functional integrity of the gastrointestinal tract by stimulating mucin secretion. We investigated whether butyrate treatment modulates mucin secretion and bacterial adherence in LoVo cells. In addition, the possible signaling pathways were also examined in connection with the upregulation of mucin secretion. The results showed that butyrate induced mucin secretion in LoVo cells, resulting in the inhibition of Escherichia coli adhesion by increasing the adherence of Lactobacillus acidophilus and Bifidobacterium longum. The gene expression analysis suggests that mitogen-activated protein kinase (MAPK) signaling pathways including Cdc42-PAK pathway appears to be involved in stimulating mucin secretion. More importantly, butyrate induced the increased actin expression and polymerization in LoVo cells, which could be attributable to the Cdc42-PAK signaling pathway, implicated in actin cytoskeleton and mucin secretion. Our results provide a molecular basis in modulating bacterial adherence and the MAPK signaling pathway for the improved homeostasis of colonic epithelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282476 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269872 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!