A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs. | LitMetric

Pneumoconiosis staging has been a very challenging task, both for certified radiologists and computer-aided detection algorithms. Although deep learning has shown proven advantages in the detection of pneumoconiosis, it remains challenging in pneumoconiosis staging due to the stage ambiguity of pneumoconiosis and noisy samples caused by misdiagnosis when they are used in training deep learning models. In this article, we propose a fully deep learning pneumoconiosis staging paradigm that comprises a segmentation procedure and a staging procedure. The segmentation procedure extracts lung fields in chest radiographs through an Asymmetric Encoder-Decoder Network (AED-Net) that can mitigate the domain shift between multiple datasets. The staging procedure classifies the lung fields into four stages through our proposed deep log-normal label distribution learning and focal staging loss. The two cascaded procedures can effectively solve the problem of model overfitting caused by stage ambiguity and noisy labels of pneumoconiosis. Besides, we collect a clinical chest radiograph dataset of pneumoconiosis from the certified radiologist's diagnostic reports. The experimental results on this novel pneumoconiosis dataset confirm that the proposed deep pneumoconiosis staging paradigm achieves an Accuracy of 90.4%, a Precision of 84.8%, a Sensitivity of 78.4%, a Specificity of 95.6%, an F1-score of 80.9% and an Area Under the Curve (AUC) of 96%. In particular, we achieve 68.4% Precision, 76.5% Sensitivity, 95% Specificity, 72.2% F1-score and 89% AUC on the early pneumoconiosis 'stage-1'.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3190923DOI Listing

Publication Analysis

Top Keywords

pneumoconiosis staging
20
deep learning
16
pneumoconiosis
11
fully deep
8
staging
8
chest radiographs
8
stage ambiguity
8
staging paradigm
8
segmentation procedure
8
staging procedure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!