Low-Energy Electron Damage to Plasmid DNA in Thin Films: Dependence on Substrates, Surface Density, Charging, Environment, and Uniformity.

J Phys Chem B

Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada.

Published: July 2022

The interaction of low-energy electrons (LEEs) with DNA plays a significant role in the mechanisms leading to biological damage induced by ionizing radiation, particularly in radiotherapy, and its sensitization by chemotherapeutic drugs and nanoparticles. Plasmids constitute the form of DNA found in mitochondria and appear as a suitable model of genomic DNA. In a search for the best LEE targets, damage was induced to plasmids, in thin films in vacuum, by 6, 10, and 100 eV electrons under single collision conditions. The yields of single- and double-strand breaks, other cluster damage, isolated base lesions, and crosslinks were measured by electrophoresis and enzyme treatment. The films were deposited on oriented graphite or polycrystalline tantalum, with or without DNA autoassembly via diaminopropane (Dap) intercalation. Yields were correlated with the influence of vacuum, film uniformity, surface density, substrates, and the DNA environment. Aided by surface potential measurements and scanning electron microscopy and atomic force microscopy images, the lyophilized Dap-DNA films were found to be the most practical high-quality targets. These studies pave the way to the fabrication of LEE target-films composed of plasmids intercalated with biomolecules that could mimic the cellular environment; for example, as a first step, by replacing Dap with an amino acid.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c03664DOI Listing

Publication Analysis

Top Keywords

thin films
8
surface density
8
damage induced
8
dna
6
low-energy electron
4
damage
4
electron damage
4
damage plasmid
4
plasmid dna
4
dna thin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!