A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a machine-learning based model for predicting multidimensional outcome after surgery for degenerative disorders of the spine. | LitMetric

Background: It is clear that individual outcomes of spine surgery can be quite heterogeneous. When consenting a patient for surgery, it is important to be able to offer an individualized prediction regarding the likely outcome. This study used a comprehensive set of data collected over 12 years in an in-house registry to develop a parsimonious model to predict the multidimensional outcome of patients undergoing surgery for degenerative pathologies of the thoracic, lumbar or cervical spine.

Methods: Data from 8374 patients (mean age 63.9 (14.9-96.3) y, 53.4% female) were used to develop a model to predict the 12-month scores for the Core Outcome Measures Index (COMI) and its subdomain scores. The data were split 80:20 into a training and test set. The top predictors were selected by applying recursive feature elimination based on LASSO cross validation models. Based on the 111 top predictors (contained within 20 variables), Ridge cross validation models were trained, validated, and tested for each of 9 outcome domains, for patients with either "Back" (thoracic/lumbar spine) or "Neck" (cervical spine) problems (total 18 models).

Results: Among the strongest outcome predictors in most models were: preoperative scores for almost all COMI items (especially axial pain (back or neck) and peripheral pain (leg/buttock or arm/shoulder)), catastrophizing, fear avoidance beliefs, comorbidity, age, BMI, nationality, previous spine surgery, type and spinal level of intervention, number of affected levels, and surgeon seniority. The R of the models on the validation/test sets averaged 0.16/0.13. A preliminary online tool was programmed to present the predicted outcomes for individual patients, based on their presenting characteristics. https://linkup.kws.ch/prognostictool .

Conclusion: The models provided estimates to enable a bespoke prediction of the outcome of surgery for individual patients with varying degenerative pathologies and baseline characteristics. The models form the basis of a simple, freely-available online prognostic tool developed to improve access to and usability of prognostic information in clinical practice. It is hoped that, following confirmation of its validity and practical utility, the tool will ultimately serve to facilitate decision-making and the management of patients' expectations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00586-022-07306-8DOI Listing

Publication Analysis

Top Keywords

multidimensional outcome
8
outcome surgery
8
surgery degenerative
8
spine surgery
8
prediction outcome
8
model predict
8
degenerative pathologies
8
top predictors
8
cross validation
8
validation models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!