A novel low volume blood loop model (Ension Triad System [ETS]) incorporating pulsatile flow and a proprietary low-activation blood-contacting surface (Ension bioactive surface [EBS]) enabling high signal-to-noise performance is described. The ETS system incorporates a test chamber that allows direct comparison of material samples or finished medical devices such as catheters with varying compositions and/or surface treatments. ETS performance is presented from two independent organizations (Medtronic and MLM Labs) and includes results for hemolysis (pfHgb), platelet count, platelet activation (βTG), coagulation (TAT), inflammation (PMN Elastase, PMN CD112b, and monocyte CD112b) and immune response (SC5b-9) were made on: (1) the EBS-treated system itself without a test material (No Material, NM); (2) the EBS-treated system with an idealized untreated catheter (UC); and (3) the EBS-treated system with the prototype catheter treated with the EBS surface treatment (CC). The untreated catheter (UC) was associated with significant elevation of all activation marker levels (pfHgb excluded). The EBS-treated catheter, in direct comparison to the UC and NM catheters, appeared invisible with respect to the activation markers (all markers statistically different than the UC and equivalent to the NM control). Based on these data, we conclude that using a relatively small surface area test sample and a small volume of fresh human blood, the high signal-to-noise performance of the ETS system demonstrates comprehensive and statistically significant material differences in the major ISO 10993-4 categories of blood interaction. These data underscore the important benefit of minimal confounding of test/device responses with non-test-material/model-related responses. ETS offers a practical alternative to the common one-test-category-at-a-time approach when assessing blood/medical device interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35130DOI Listing

Publication Analysis

Top Keywords

ebs-treated system
12
blood loop
8
loop model
8
medical devices
8
fresh human
8
human blood
8
high signal-to-noise
8
signal-to-noise performance
8
ets system
8
direct comparison
8

Similar Publications

A novel low volume blood loop model (Ension Triad System [ETS]) incorporating pulsatile flow and a proprietary low-activation blood-contacting surface (Ension bioactive surface [EBS]) enabling high signal-to-noise performance is described. The ETS system incorporates a test chamber that allows direct comparison of material samples or finished medical devices such as catheters with varying compositions and/or surface treatments. ETS performance is presented from two independent organizations (Medtronic and MLM Labs) and includes results for hemolysis (pfHgb), platelet count, platelet activation (βTG), coagulation (TAT), inflammation (PMN Elastase, PMN CD112b, and monocyte CD112b) and immune response (SC5b-9) were made on: (1) the EBS-treated system itself without a test material (No Material, NM); (2) the EBS-treated system with an idealized untreated catheter (UC); and (3) the EBS-treated system with the prototype catheter treated with the EBS surface treatment (CC).

View Article and Find Full Text PDF

Endothelial cells (ECs) provide inductive signals for cell differentiation in vivo. However, it is unknown if these cells promote such differentiation in vitro and the signals involved. We investigated whether ECs are able to enhance the differentiation of the three germ layers and the underlying mechanisms.

View Article and Find Full Text PDF

Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is required for the development of vascular as well as hematopoietic system in embryoid bodies.

Genes Cells

July 2006

Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.

We have shown that puromycin insensitive leucyl-specific aminopeptidase (PILSAP) is required for regulation of angiogenesis. However, it remains unclear whether PILSAP plays a role in endothelial cell (EC) differentiation. We examined the role of PILSAP by using an embryoid bodies (EBs) culture system.

View Article and Find Full Text PDF

Tumor progression necessitates the induction of blood vessels that converge upon the tumor and enhance the diffusibility of oxygen and nutrients. Approaches to treat cancer by antiangiogenic therapy are therefore straightforward, and there is a great need for suitable in vitro systems to test antiangiogenic agents. In the present study, embryoid bodies (EBs) differentiated from totipotent mouse embryonic stem (ES) cells and cultivated using the spinner flask technique are introduced as an in vitro system for antiangiogenesis research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!