Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because a lncRNA's target genes scattering in a genome have correlated functions, epigenetic analyses should often be genome-wide on both genome and transcriptome levels. Multiple tools have been developed for predicting lncRNA/DNA binding, but fast and accurate genome-wide prediction remains a challenge. Here we report Fasim-LongTarget (a revised version of LongTarget), compare its performance with TDF and LongTarget using the experimental data of the lncRNA MEG3, NEAT1, and MALAT1, and describe a case of genome-wide prediction. Fasim-LongTarget is as accurate as LongTarget and more accurate than TDF and is 200 times faster than LongTarget, making accurate genome-wide prediction feasible. The code is available on the Github website (https://github.com/LongTarget/Fasim-LongTarget), and the online service is available on the LongTarget website (https://lncRNA.smu.edu.cn).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254339 | PMC |
http://dx.doi.org/10.1016/j.csbj.2022.06.017 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.
Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.
View Article and Find Full Text PDFGeroscience
December 2024
Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.
View Article and Find Full Text PDFPoult Sci
December 2024
Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Hainan, Haikou 571101, PR China. Electronic address:
In order to provide a low-cost, high efficient, and highly accurate tool for molecular breeding of Jiaji ducks, we constructed a cGPS(Genotyping by Pinpoint Sequencing of captured targets) 20 K liquid-phase microarray using resequencing data from this valuable poultry breed for the first time. The microarray contains 20,327 high-quality snp loci, mainly from the 30 Jiaji duck resequencing samples collected in this study, and some loci were supplemented from the 135 duck resequencing data from KUNMING INSTITUTE OF ZOOLOGY.CAS.
View Article and Find Full Text PDFBasic Res Cardiol
December 2024
Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
Novel biomarkers are needed to better identify-and distinguish-heart failure with preserved ejection fraction (HFpEF) from other clinical phenotypes. The goal of our study was to identify epigenetic-sensitive biomarkers useful to a more accurate diagnosis of HFpEF. We performed a network-oriented genome-wide DNA methylation study of circulating CD4 T lymphocytes isolated from peripheral blood using reduced representation bisulfite sequencing (RRBS) in two cohorts (i.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Agronomy and Biotechnology, China Agricultural University/ The Innovation Center (Beijing) of Crop Seeds Whole-Process Technology Research of Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement, Beijing 100193, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!