Dyschromatosis symmetrica hereditaria (DSH), characterized by a mixture of hyper- and hypopigmented macules on the skin, is a rare pigmentary dermatosis of autosomal dominant inheritance. The pathogenic gene is adenosine deaminase acting on the RNA 1 gene (ADAR1), mutations in this gene also lead to Aicardi-Goutières syndrome type 6 (AGS 6), a rare hereditary encephalopathy with isolated spastic paraplegia. The pathomechanism of the ADAR1 gene mutations inducing DSH has not been clarified yet. We report the first case of DSH combined with AGS caused by the homozygous mutation of the ADAR1 gene in China (c.1622T > A) and reviewed the relevant literature. AGS 6 could occur in both men and women, and start in infancy. The main characteristics are growth retardation, skin depigmentation, intracranial calcification, and cerebral white matter lesions. In the current paper, the proband also had patent ductus arteriosus (PDA), ventricular septal defect (VSD), and mitral valve calcification, which are new symptoms that have not been reported in other cases. Additionally, we also aim to discuss the possible molecular mechanisms underlying the clinical heterogeneity caused by ADAR1 gene mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272138 | PMC |
http://dx.doi.org/10.3389/fped.2022.852903 | DOI Listing |
Genes (Basel)
January 2025
Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Thoracic Oncology Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
A-to-I RNA editing is a pervasive mechanism in the human genome that affects the regulation of gene expression and is closely associated with the pathogenesis of numerous diseases. This study elucidates the regulatory mechanism of A-to-I edited miR-1304-3p in esophageal squamous cell carcinoma (ESCC). Western blot, immunohistochemistry, and RT-qPCR assays were employed to quantify protein and mRNA expression.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
Background: Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases.
Results: In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed.
Cell Signal
December 2024
Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:
Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.
View Article and Find Full Text PDFCells
November 2024
Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France.
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of mutant phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!