Finite Element Based Optimization of Human Fingertip Optical Elastography.

J Eng Sci Med Diagn Ther

Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street MC 063, Chicago, IL 60607-7072.

Published: August 2018

Dynamic elastography methods attempt to quantitatively map soft tissue viscoelastic properties. Application to the fingertip, relevant to medical diagnostics and to improving tactile interfaces, is a novel and challenging application, given the small target size. In this feasibility study, an annular actuator placed on the surface of the fingertip and driven harmonically at multiple frequencies sequentially creates geometrically focused surface (GFS) waves. These surface wave propagation patterns are measured using scanning laser Doppler vibrometry. Reconstruction (the inverse problem) is performed in order to estimate fingertip soft tissue viscoelastic properties. The study identifies limitations of an analytical approach and introduces an optimization approach that utilizes a finite element (FE) model. Measurement at multiple frequencies reveals limitations of an assumption of homogeneity of material properties. Identified shear viscoelastic properties increase significantly as frequency increases and the depth of penetration of the surface wave is reduced, indicating that the fingertip is significantly stiffer near its surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8697571PMC
http://dx.doi.org/10.1115/1.4040199DOI Listing

Publication Analysis

Top Keywords

viscoelastic properties
12
finite element
8
soft tissue
8
tissue viscoelastic
8
multiple frequencies
8
surface wave
8
fingertip
5
surface
5
element based
4
based optimization
4

Similar Publications

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Insights on the role of cryoprotectants in enhancing the properties of bioinks required for cryobioprinting of biological constructs.

J Mater Sci Mater Med

January 2025

Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, 613401, India.

Preservation and long-term storage of readily available cell-laden tissue-engineered products are major challenges in expanding their applications in healthcare. In recent years, there has been increasing interest in the development of off-the-shelf tissue-engineered products using the cryobioprinting approach. Here, bioinks are incorporated with cryoprotective agents (CPAs) to allow the fabrication of cryopreservable tissue constructs.

View Article and Find Full Text PDF

Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.

View Article and Find Full Text PDF

Multiscale Mechanical Study of Proanthocyanidins for Recovering Residual Stress in Decellularized Blood Vessels.

Adv Healthc Mater

January 2025

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.

Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!