Navigating the microclimatic environment for the optimal control of water-from-air devices could be a challenge. An example of such a device is an air-based solar hydrogen production device. Such a device promises the ability for off-grid, easily deployable and modular hydrogen production for on-site consumption. Novel analysis techniques, such as wavelet transform coherence analysis, could assist in better understanding the microclimate in which air-based hydrogen production devices might function. The analysis becomes complicated when a system is evaluated at the microclimatic level, especially when it is considered that the performance of air-based solar hydrogen devices are not only dependent on solar radiation, but also on humidity levels in the air. To get a grasp of the interactions that take place within a microclimatic system, a two-tiered approach is presented. It has been shown that relative humidity and temperature is stratified close to the ground, and that the stratification undergoes an inversion twice per day. A possible link between absolute humidity and wind direction is observed and humidity rallies are identified. Using microclimate monitoring and wavelet transform coherence analysis, an attempt is made to disentangle microclimatic variables by pointing out regions of high coherence and regions of low coherence between different variables. It is furthermore suggested that the propagation direction of a humidification process within the microclimate can be determined by considering the phase angle between relative humidity timeseries at different heights above the ground, using wavelet transform coherence analysis. It has been demonstrated that wavelet transform coherence analysis, in conjunction with a comprehensive microclimate monitoring process, could support the understanding of the complex processes that occur within the microclimatic environment and therefore support the management of water-from-air systems. In this regard a management framework is also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272359PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e09883DOI Listing

Publication Analysis

Top Keywords

hydrogen production
16
wavelet transform
16
transform coherence
16
coherence analysis
16
air-based solar
12
solar hydrogen
12
microclimatic environment
8
relative humidity
8
microclimate monitoring
8
analysis
6

Similar Publications

Quadruple perovskite oxides have received extensive attention in electronics and catalysis, owing to their cation-ordering structure and intriguing physical properties. However, their repertoires still remain limited. In particular, piezoelectricity from quadruple perovskites has been rarely reported due to the frustrated symmetry-breaking transition in A-site-ordered perovskite structures, disabling their piezoelectric applications.

View Article and Find Full Text PDF

Construction of CuMoS/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production.

Langmuir

January 2025

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.

View Article and Find Full Text PDF

A comprehensive study of the influence of non-covalent interactions on electron density redistribution during the reaction between acetic acid and methylamine.

J Mol Model

January 2025

Sorbonne Université, CNRS, "De la Molécule aux Nano-Objets : Réactivité, Interactions et Spectroscopies", MONARIS, UMR 8233, 4 Place Jussieu, Paris, 75005, France.

Context: A chemical reaction can be described, from a physicochemical perspective, as a redistribution of electron density. Additionally, non-covalent interactions locally modify the electron density distribution. This study aims to characterize the modification of reactivity caused by the presence of non-covalent interactions such as hydrogen bonds, in a reaction involving the formation of two bonds and the breaking of two others: CH₃COOH + NH₂CH₃ → CH₃CONHCH₃.

View Article and Find Full Text PDF

Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants.

View Article and Find Full Text PDF

Ammonia Decomposition Catalyzed by Co Nanoparticles Encapsulated in Rare Earth Oxide.

J Phys Chem Lett

January 2025

Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.

We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!