Large quantities of semiconductor minerals on soil surfaces have a sensitive photoelectric response. These semiconductor minerals generate photo-electrons and photo-hole pairs that can stimulate soil oxidation-reduction reactions when exposed to sunlight. We speculated that the photocatalysis of semiconductor minerals would affect soil carbon cycles. As the main component of the carbon cycle, soil respiration from paddy soil is often ignored. Five rice cropping areas in China were chosen for soil sampling. Semiconductor minerals were measured, and three main semiconductor minerals including hematile, rutile, and manganosite were identified in the paddy soils. The identified semiconductor minerals consisted of iron, manganese, and titanium oxides. Content of FeO, TiO, and MnO in the sampled soil was between 4.21-14%, 0.91-2.72%, and 0.02-0.22%, respectively. Most abundant semiconductor mineral was found in the DBDJ rice cropping area in Jilin province, with the highest content of FeO of 14%. Soils from the five main rice cropping areas were also identified as having strong photoelectric response characteristics. The highest photoelectric response was found in the DBDJ rice cropping area in Jilin province with a maximum photocurrent density of 0.48 μA/cm. Soil respiration was monitored under both dark and light (3,000 lux light density) conditions. Soil respiration rates in the five regions were (from highest to lowest): DBDJ > XNDJ > XBDJ > HZSJ > HNSJ. Soil respiration was positively correlated with semiconductor mineral content, and soil respiration was higher under the light treatment than the dark treatment in every rice cropping area. This result suggested that soil respiration was stimulated by semiconductor mineral photocatalysis. This analysis provided indirect evidence of the effect semiconductor mineral photocatalysis has on the carbon cycle within paddy soils, while exploring carbon conversion mechanisms that could provide a new perspective on the soil carbon cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271915 | PMC |
http://dx.doi.org/10.3389/fpls.2022.941144 | DOI Listing |
Sci Total Environ
January 2025
Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France. Electronic address:
The use of lithium (Li) in decarbonization strategies has positioned it as a central component of modern technological advances, particularly in battery applications. However, the increasing demand for Li has raised concerns about its environmental consequences, which are poorly documented. This study aimed to fill this knowledge gap by examining the impact of Li on soil bacterial/fungal communities.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFSci China Life Sci
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Many alpine ecosystems are undergoing vegetation degradation because of global changes, which are affecting ecosystem functioning and biodiversity. The ecological consequences of alpine pioneer community degradation have been less studied than glacial retreat or meadow degradation in alpine ecosystems. We document the comprehensive responses of microbial community characteristics to degradation processes using field-based sampling, conduct soil microcosm experiments to simulate the effects of global change on microorganisms, and explore their relationships to ecosystem functioning across stages of alpine pioneer community degradation.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Department of Biology, School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Ribeirão Preto, Brazil.
This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.
View Article and Find Full Text PDFJ Environ Manage
February 2025
Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.
Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!