The impact of ordinal scales on Gaussian mixture recovery.

Behav Res Methods

Psychological Methods Group, University of Amsterdam, Amsterdam, Netherlands.

Published: June 2023

Gaussian mixture models (GMMs) are a popular and versatile tool for exploring heterogeneity in multivariate continuous data. Arguably the most popular way to estimate GMMs is via the expectation-maximization (EM) algorithm combined with model selection using the Bayesian information criterion (BIC). If the GMM is correctly specified, this estimation procedure has been demonstrated to have high recovery performance. However, in many situations, the data are not continuous but ordinal, for example when assessing symptom severity in medical data or modeling the responses in a survey. For such situations, it is unknown how well the EM algorithm and the BIC perform in GMM recovery. In the present paper, we investigate this question by simulating data from various GMMs, thresholding them in ordinal categories and evaluating recovery performance. We show that the number of components can be estimated reliably if the number of ordinal categories and the number of variables is high enough. However, the estimates of the parameters of the component models are biased independent of sample size. Finally, we discuss alternative modeling approaches which might be adopted for the situations in which estimating a GMM is not acceptable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250525PMC
http://dx.doi.org/10.3758/s13428-022-01883-8DOI Listing

Publication Analysis

Top Keywords

gaussian mixture
8
recovery performance
8
ordinal categories
8
impact ordinal
4
ordinal scales
4
scales gaussian
4
recovery
4
mixture recovery
4
recovery gaussian
4
mixture models
4

Similar Publications

Background: Post-acute COVID-19 Syndrome (PACS) occurs in some COVID-19 patients long after acute infection and significantly affects patients' health. However, the mechanism by which PACS develops is unknown. Myosin light chain 9 (Myl9), produced by activated platelets, plays a role in immune dysregulation and microthrombi formation during acute COVID-19.

View Article and Find Full Text PDF

Analysis and validation of serum biomarkers in brucellosis patients through proteomics and bioinformatics.

Front Cell Infect Microbiol

January 2025

Department of Clinical Laboratory Medicine Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia, China.

Introduction: This study aims to utilize proteomics, bioinformatics, and machine learning algorithms to identify diagnostic biomarkers in the serum of patients with acute and chronic brucellosis.

Methods: Proteomic analysis was conducted on serum samples from patients with acute and chronic brucellosis, as well as from healthy controls. Differential expression analysis was performed to identify proteins with altered expression, while Weighted Gene Co-expression Network Analysis (WGCNA) was applied to detect co-expression modules associated with clinical features of brucellosis.

View Article and Find Full Text PDF

Background: Mixed infection with multiple strains of the same pathogen in a single host can present clinical and analytical challenges. Whole genome sequence (WGS) data can identify signals of multiple strains in samples, though the precision of previous methods can be improved. Here, we present MixInfect2, a new tool to accurately detect mixed samples from Mycobacterium tuberculosis short-read WGS data.

View Article and Find Full Text PDF

Omics data provide a plethora of quantifiable information that can potentially be used to identify biomarkers targeting the physiological processes and ecological phenomena of organisms. However, omics data have not been fully utilized because current prediction methods in biomarker construction are susceptible to data multidimensionality and noise. We developed OmicSense, a quantitative prediction method that uses a mixture of Gaussian distributions as the probability distribution, yielding the most likely objective variable predicted for each biomarker.

View Article and Find Full Text PDF

Tau exhibits change in both spatial extent and density of pathology along the Alzheimer's disease (AD) spectrum with each aspect contributing to the overall burden of pathological tau. Nevertheless, studies using Tau PET have measured either magnitude using standardized uptake value ratios (SUVRs) or extent using number of Tau+ regions. We hypothesized that combining these two dimensions into a single measure of Magnitude and eXtent, Tau-MaX, would provide improved quantification of global tau burden as well as allowing for a region-agnostic measure of global tau burden that does not require a pre-specified region of interest (ROI) or meta-ROI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!