A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Failure modes and mechanisms of layered h-BN under local energy injection. | LitMetric

Layered h-BN may serve as an important dielectric and thermal management material in the next-generation nanoelectronics, in which its interactions with electron beam play an important role in device performance and reliability. Previous studies report variations in the failure strength and mode. In this study, using molecular dynamics simulations, we study the effect of local heat injection due to the electron beam and h-BN interaction on the failure start time and failure mode. It is found that at the same heat injection rate, the failure start time decreases with the increase in the layer number. With the introduction of point defects in the heating zone, the failure always starts from the defect site, and the start time can be significantly shortened. For monolayer h-BN, failure always starts within the layer, and once failure starts, its propagation is through melting or vaporization of the h-BN atoms, and no swelling occurs. For multiple layers, once failure starts within the h-BN film, swelling occurs first. With continued heating, the large pressure induced by melting and vaporization can cause the burst of the layers above, leading to the formation of a pit. In the presence of multiple defects within the heating zone, these defects can interact, causing a further reduction in the failure start time. We also reveal the relation of beam power with layer-by-layer failure mode and swelling/pit formation mode. The present work not only reproduces many interesting experimental observations, but also reveal several interesting mechanisms responsible for the failure processes and modes. It is expected that the findings revealed here may provide useful references for the design and engineering of h-BN for device applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279385PMC
http://dx.doi.org/10.1038/s41598-022-16199-yDOI Listing

Publication Analysis

Top Keywords

start time
16
failure starts
16
failure
12
failure start
12
layered h-bn
8
electron beam
8
heat injection
8
failure mode
8
defects heating
8
heating zone
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!