Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Digital clinical measures based on data collected by wearable devices have seen rapid growth in both clinical trials and healthcare. The widely-used measures based on wearables are epoch-based physical activity counts using accelerometer data. Even though activity counts have been the backbone of thousands of clinical and epidemiological studies, there are large variations of the algorithms that compute counts and their associated parameters-many of which have often been kept proprietary by device providers. This lack of transparency has hindered comparability between studies using different devices and limited their broader clinical applicability. ActiGraph devices have been the most-used wearable accelerometer devices for over two decades. Recognizing the importance of data transparency, interpretability and interoperability to both research and clinical use, we here describe the detailed counts algorithms of five generations of ActiGraph devices going back to the first AM7164 model, and publish the current counts algorithm in ActiGraph's ActiLife and CentrePoint software as a standalone Python package for research use. We believe that this material will provide a useful resource for the research community, accelerate digital health science and facilitate clinical applications of wearable accelerometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279376 | PMC |
http://dx.doi.org/10.1038/s41598-022-16003-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!