Building electrification is essential to many full-economy decarbonization pathways. However, current decarbonization modeling in the United States (U.S.) does not incorporate seasonal fluctuations in building energy demand, seasonal fluctuations in electricity demand of electrified buildings, or the ramifications of this extra demand for electricity generation. Here, we examine historical energy data in the U.S. to evaluate current seasonal fluctuation in total energy demand and management of seasonal fluctuations. We then model additional electricity demand under different building electrification scenarios and the necessary increases in wind or solar PV to meet this demand. We found that U.S. monthly average total building energy consumption varies by a factor of 1.6×-lowest in May and highest in January. This is largely managed by fossil fuel systems with long-term storage capability. All of our building electrification scenarios resulted in substantial increases in winter electrical demand, enough to switch the grid from summer to winter peaking. Meeting this peak with renewables would require a 28× increase in January wind generation, or a 303× increase in January solar, with excess generation in other months. Highly efficient building electrification can shrink this winter peak-requiring 4.5× more generation from wind and 36× more from solar.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278320PMC
http://dx.doi.org/10.1038/s41598-022-15628-2DOI Listing

Publication Analysis

Top Keywords

building electrification
20
seasonal fluctuations
12
building energy
8
energy demand
8
electricity demand
8
electrification scenarios
8
demand
7
energy
6
building
6
electrification
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!