Rational: Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are soft ionization techniques commonly used in mass spectrometry. Although in-source and post-source decays of MALDI have been investigated extensively, the analogous decays of ESI have received little attention. Previous studies regarding the analogous decays of ESI focus on the dissociation of multiply charged proteins and peptides. The decay of carbohydrates in ESI has not been investigated yet, and it may have interference in carbohydrate structural determination.
Methods: Commercial apparatus, including a high-performance liquid chromatography (HPLC), an ESI source, and a linear ion trap mass spectrometer, were used to investigate the fragmentation of several N-glycans during the ESI process.
Results: About 0.2%-3% of neutral N-glycans and more than 50% of N-glycans consisting of a sialic acid are dissociated into small N-glycans by ESI in-source decay in typical ESI operating conditions. The efficiencies of most dissociation channels increase as the temperature of ion transfer capillary increases, indicating that part of the energy deposited into the precursor ions for cracking is from the heated capillary. The cracking patterns of ESI in-source decay are slightly different from those of gaseous phase collision-induced dissociation.
Conclusions: Large N-glycans are dissociated into small N-glycans in ESI in-source decay that may result in the interference of the structural identification of small N-glycans. Separation of large N-glycans from small N-glycans, for example, using HPLC, prior to ESI ionization is necessary to eliminate the interference. This is particularly important when N-glycans consist of sialic acid or large N-glycans have much higher concentration than that of small N-glycans in ESI solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.9352 | DOI Listing |
Front Neurol
October 2024
Department of Neurology, University of California, Irvine, Irvine, CA, United States.
Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid -glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
The protein glycome of individual cell types in the brain is unexplored, despite the critical function of these modifications in development and disease. In aggregate, the most abundant asparagine (N-) linked glycans in the adult brain are high mannose structures, and specifically ManGlcNAc (Man-5), which normally exits the ER for further processing in the Golgi. Mannose structures are uncommon in other organs and often overlooked or excluded in most studies.
View Article and Find Full Text PDFAllergol Select
October 2024
Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld.
Mol Cell
October 2024
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA. Electronic address:
In a recent publication in Cell, Xie et al. report a sensitive and scalable method for the detection and characterization of native glycoRNAs and identify acpU, an abundant modified nucleoside discovered 50 years ago in tRNA, as one of the primary attachment sites for N-glycans.
View Article and Find Full Text PDFbioRxiv
August 2024
Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, USA.
There is an increasing appreciation for the role of cell surface glycans in modulating interactions with extracellular ligands and participating in intercellular communication. We recently reported the existence of sialoglycoRNAs, where mammalian small RNAs are covalently linked to N-glycans through the modified base acpU and trafficked to the cell surface. However, little is currently known about the role for O-glycosylation, another major class of carbohydrate polymer modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!