Stimulated Raman Scattering of an Organic Liquid in a Spherical-Shell Optical Cavity around an Aqueous Pendant Drop.

J Phys Chem B

Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.

Published: July 2022

Stimulated Raman scattering (SRS) in a liquid droplet enhances the Raman scattering intensity through optical resonances. We have previously used a pendant drop at the tip of a capillary as the Raman-enhancing medium. In this study, we develop a new optical cavity for SRS measurement that consists of a spherical shell of organic liquid. This enables us to extend the applicability of the pendant-drop SRS method to liquids with low viscosity or low interfacial tension. This method is used to observe low-frequency modes of liquid benzene. The results indicate that the SRS emerges locally with respect to the drop size. The developed method extends the study of liquid structures based on vibrational spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c03414DOI Listing

Publication Analysis

Top Keywords

raman scattering
12
stimulated raman
8
organic liquid
8
optical cavity
8
pendant drop
8
liquid
5
scattering organic
4
liquid spherical-shell
4
spherical-shell optical
4
cavity aqueous
4

Similar Publications

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

In this work, we investigated individual bacteria belonging to strains of the Beijing family with different drug sensitivity (sensitive, multi and extensive drug-resistant) by surface-enhanced Raman spectroscopy (SERS) in the fingerprint region. The latter is focused on the spectral bands, which correspond to a set of glutathione bands and DNA methylation patterns revealed due to 5-methylcytosine spectral biomarkers. It is shown that these spectral features can be correlated with drug sensitivity and DNA methylation.

View Article and Find Full Text PDF

Biocompatible Lyotropic Nanocarriers for Improved Delivery of Ascorbyl Tetraisopalmitate in Skincare.

Langmuir

January 2025

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.

Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.

View Article and Find Full Text PDF

The role of surfactant proteins A and D (SP-A and SP-D) in lung clearance and translocation to secondary organs of inhaled nanoparticles was investigated by exposing SP-A and SP-D knockout (AKO and DKO) and wild type (WT) mice nose-only for 3 hours to an aerosol of 20 nm gold nanoparticles (AuNPs). Animals were euthanised at 0-, 1-, 7- and 28-days post-exposure. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) of the liver and kidneys showed that extrapulmonary translocation was below the limits of detection.

View Article and Find Full Text PDF

Near-Field Mixing in a Coaxial Dual Swirled Injector.

Flow Turbul Combust

November 2024

Institut de Mécanique des Fluides de Toulouse, IMFT, CNRS, Université de Toulouse, Toulouse, France.

Improving mixing between two coaxial swirled jets is a subject of interest for the development of next generations of fuel injectors. This is particularly crucial for hydrogen injectors, where the separate introduction of fuel and oxidizer is preferred to mitigate the risk of flashback. Raman scattering is used to measure the mean compositions and to examine how mixing between fuel and air streams evolves along the axial direction in the near-field of the injector outlet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!