Biodegradable conductive composites are key materials or components for printable transient electronics that can be fabricated in a low-cost and high-efficiency manner, thereby boosting their wide applications in biomedical engineering, hardware security, and environmental-friendly electronics. Continuous efforts in this area still lie in the development of strategies for highly conductive, safe, and reliable biodegradable conductive composite materials and devices. This paper introduces molybdenum/wax composites for multimodally printable transient electronics in which multiple transience modes including dissolution-induced degradation and thermally triggered degradation are available. Systematic experiments demonstrate several advantages and unique properties of this material system, including solvent-free fabrication, self-sintering behavior, and long-term and high conductivity via accelerable self-sintering treatment and rehealing capabilities. Notably, the immersion of molybdenum/wax composites in phosphate buffer solution can provide both positive effects (accelerated self-sintering-dominated) and negative effects (degradation-dominated) on their electrical conductivities. Mechanism analyses reveal the basis for balancing the degradation and accelerated self-sintering processes. The presented demonstrations foreshadow opportunities of the developed molybdenum/wax composites in rehealable electronics, on-demand smart transient electronics with multiple transience modes, and many other related unusual applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c04647DOI Listing

Publication Analysis

Top Keywords

transient electronics
16
molybdenum/wax composites
12
accelerable self-sintering
8
composites multimodally
8
biodegradable conductive
8
printable transient
8
electronics multiple
8
multiple transience
8
transience modes
8
electronics
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!